PIANO ATTUATIVO COMPARTO EDILIZIO 15D2 - LE CAPANNE

CLASSIFICAZIONE DI PERICOLOSITA' E FATTIBILITA'
AI SENSI DEL "REGOLAMENTO DI ATTUAZIONE
DELL'ARTICOLO 104 DELLA LEGGE REGIONALE 10
NOVEMBRE 2014, N.65 (NORME PER IL GOVERNO DEL
TERRITORIO) CONTENENTE DISPOSIZIONI IN MATERIA DI
INDAGINI GOLOGICHE, IDRAULICHE E SISMICHE"

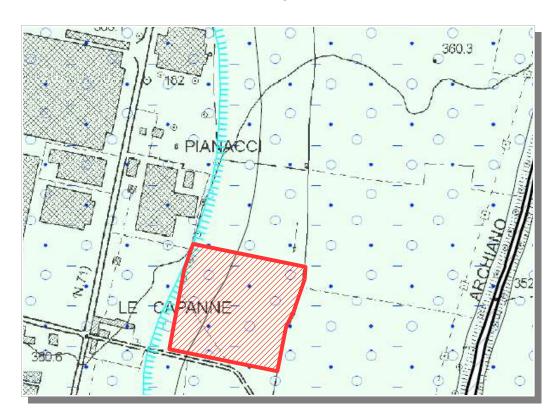
Committenti:

E.M.G.snc

CASENTINO LANE srl

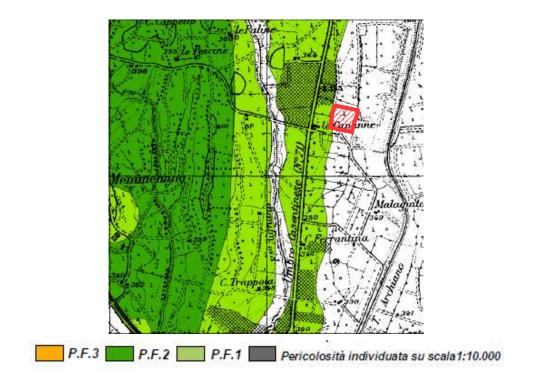
TESSITURA OCCHIOLINI di Occhiolini Francesco & C.

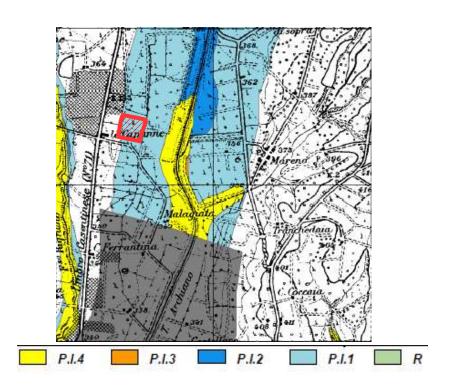
LUGLIO 2021 IL GEOLOGO


Luca Miani

DELIMITAZIONE PIANO ATTUATIVO COMPARTO 15D2 (1:2.000) ESTRATTO DA REGOLAMENTO URBANISTICO VIGENTE TAVOLA 4 – PIANACCI

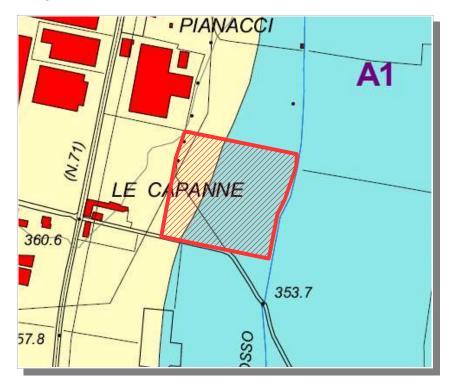
A) SINTESI DELLE CONOSCENZE

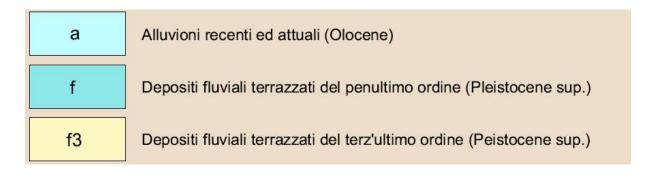

CARTA GEOLOGICA REGIONALE 1:5.000 (base 1:10.000)

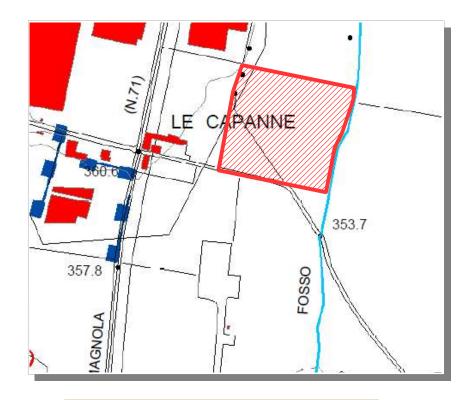

DEPOSITI DEL PLEISTOCENE - OLOCENE

PAI - CARTA DELLA PERICOLOSITA' GEOMORFOLOGICA (1:25.000)

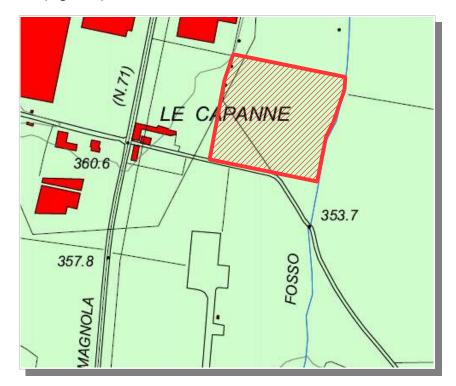
PAI - CARTA DELLA PERICOLOSITA' IDRAULICA (1:25.000)



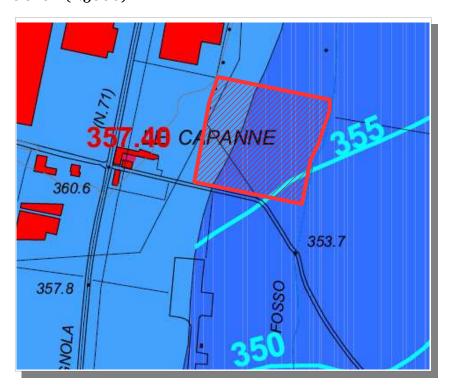

PERICOLOSITA' DA ALLUVIONE 2007/60/CE - BACINO FIUME ARNO


B) SINTESI DELLE CONOSCENZE – PIANO STRUTTURALE VIGENTE

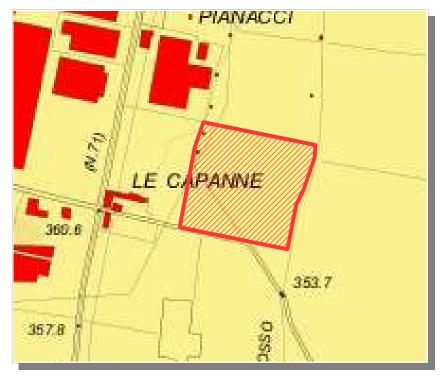
CARTA GEOLOGICA (1:5.000)

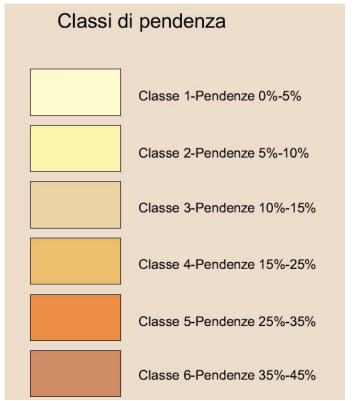


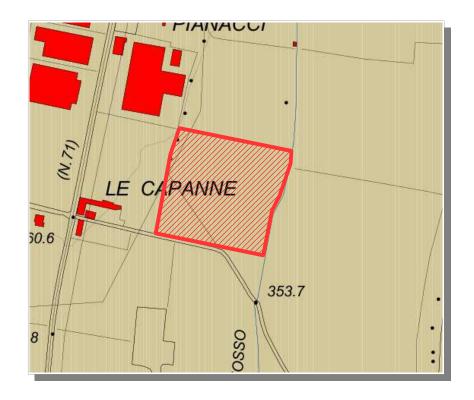
CARTA GEOMORFOLOGICA (1:5.000)


Orlo di scarpata di origine antropica

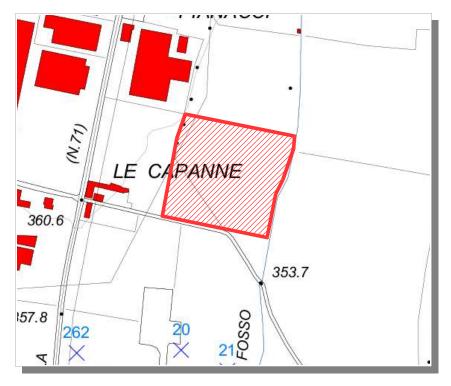
CARTA LITOTECNICA (1:5.000)



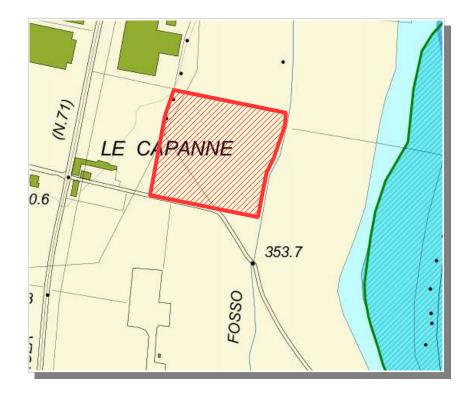

CARTA IDROGEOLOGICA (1:5000)

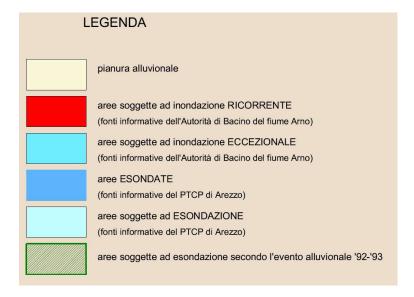


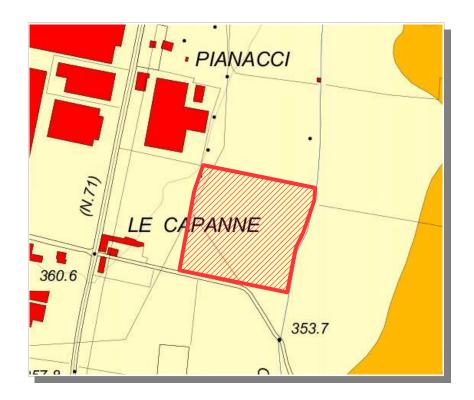
CARTA DELLE PENDENZE (1:5000)

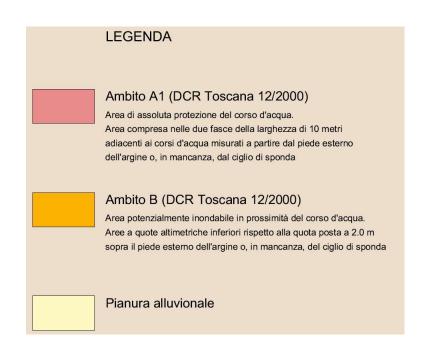


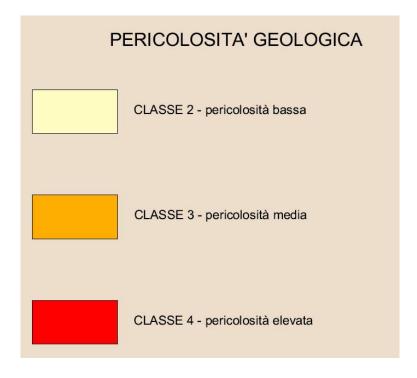
CARTA DEGLI ASPETTI PARTICOLARI PER ZONE SISMICHE (1:5000)

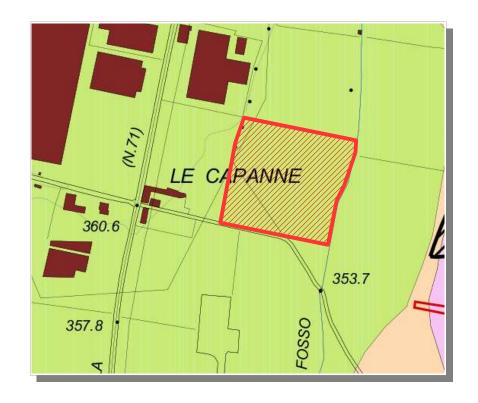


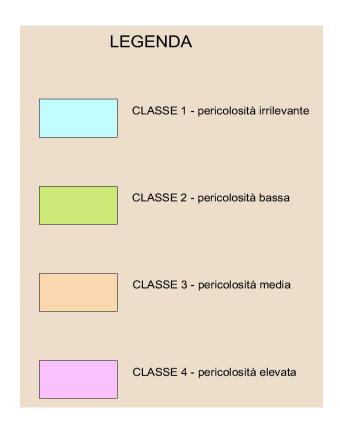

CARTA DEI SONDAGGI E DATI DI BASE (1:5000)




CARTA DELLE AREE ALLAGATE (1:5000)


CARTA DEGLI AMBITI FLUVIALI (1:5000)




PERICOLOSITA' GEOLOGICA (1:5.000)

PERICOLOSITA' IDRAULICA (1:5.000)

C) SINTESI DELLE CONOSCENZE – MICROZONAZIONE SISMICA

CARTA GEOLOGICO-TECNICA (1:5.000)

Terreni di copertura

- GP Ghiaie pulite con granulometria poco assortita, miscela di ghiaia e sabbia
- GM Ghiaie limose, miscela di ghiaia, sabbia e limo
- SM Sabbie limose, miscela di sabbia e limo
- Limi inorganici, farina di roccia, sabbie fini limose o argillose, limi argillose di bassa plasticità
- Argille inorganiche di medio-bassa plasticità, argille ghiaiose o sabbiose, argille limose

Ambienti genetico-deposizionali

Ambiente di versante

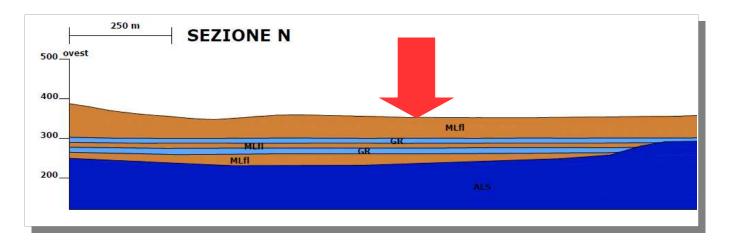
ec : eluvi/colluvi

fd : falda detritica

Ambiente fluvio-lacustre

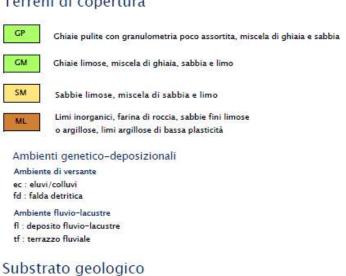
fl : deposito fluvio-lacustre

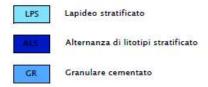
tf : terrazzo fluviale


Elementi geologici e idrogeologici

151 Ciacitura strati

22 Sondaggio che ha raggiunto il substrato rigido (profondità del substrato)


34 Sondaggio che non ha raggiunto il substrato rigido (profondità del sondaggio)


SEZIONE GEOLOGICO-TECNICA (1:5.000)

Legenda

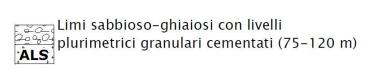
Terreni di copertura

CARTA FREQUENZE FONDAMENTALI DEPOSITI (1:5.000)

Legenda

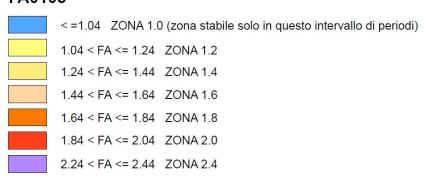
fo (Hz) (scala di colori)

- Nessuna risonanza
- fo<1,0</p>
- 1<fo<=2,5
- _____2,5<fo<=5,0
- 5<fo<10</p>
- fo>10


Ao (dimensioni crescenti)

- _ 1,1<=Ao<2
- 2,0<=Ao<3,0
- 3,0<=Ao<5,0

CARTA M.O.P.S. (1:5.000)



CARTA MICROZONAZIONE FA 0,1-0,5 s (1:5.000)

Zone stabili suscettibili di amplificazioni locali

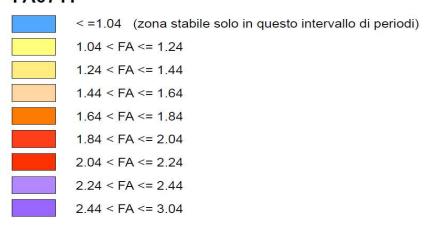
FA0105



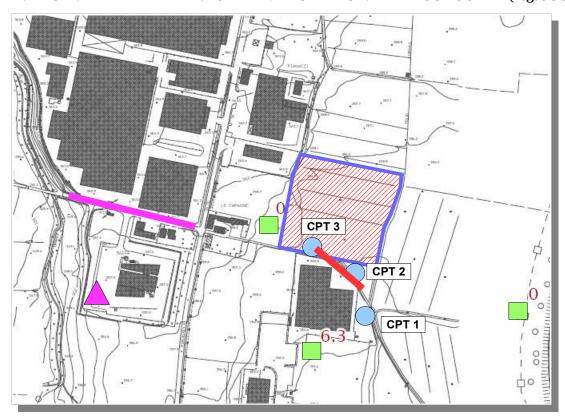
CARTA MICROZONAZIONE FA 0,4-0,8 s (1:5.000)

Zone stabili suscettibili di amplificazioni locali

FA0408



CARTA MICROZONAZIONE FA 0,7-1,1 s (1:5.000)


Zone stabili suscettibili di amplificazioni locali

FA0711

D) ANALISI E APPROFONDIMENTI - INDAGINI EFFETTUATE **NELL'AREA**

CARTA INDAGINI DI RIFERIMENTO PER VALUTAZIONE PERICOLOSITA' (1:5.000)

INDAGINI DOCUP 2000-2006 REGIONE TOSCANA

stendimento sismico ST11 sondaggio S6

INDAGINI MICROZONAZIONE SISMICA

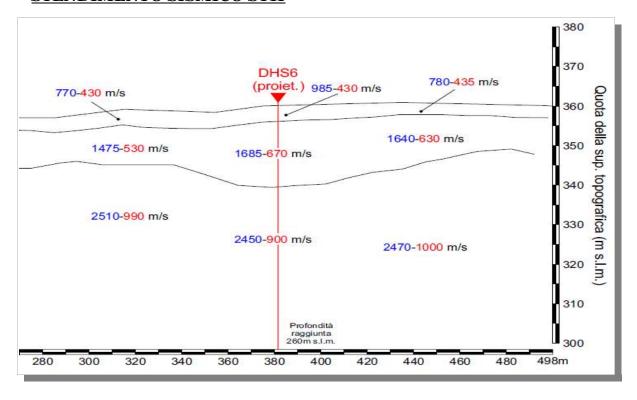
misure HVSR

INDAGINI DI SUPPORTO PER REALIZZAZIONE DI CAPANNONE INDUSTRIALE

prove CPT stendimento onde P-SH

SONDAGGIO S6

STRATIGRAFIA


~	
o - 1,8 m:	Terreno di riporto
1,8 - 3,0 m:	Limi sabbiosi prevalenti
3,0 - 4,0 m:	Elementi lapidei arenacei e calcarei
4,0 - 5,3 m:	Limi sabbiosi prevalenti
5,3 - 6,8 m:	Elementi lapidei arenacei e calcarei
6,8 - 14,5 m:	Limi sabbiosi e argille sabbiose
14,5 - 17,3 m:	Elementi lapidei arenacei e calcarei
17,3 - 20,8 m:	Limi sabbiosi e argille sabbiose
20,8 - 27,1 m:	Blocchi arenacei e calcarei

Il sondaggio prosegue fino alla profondità di 100 m senza raggiungere il substrato.

DOWN HOLE S6 (fino a 30 m)Elementi lapidei arenacei e calcarei

o – 3,0 m:	Vp = 970 m/sec	Vs = 357 m/sec
3.0 - 8.0 m:	Vp = 970 m/sec	Vs = 260 m/sec
8,0 – 15,0 m:	Vp = 2028 m/sec	Vs = 532 m/sec
15,0 – 18,0 m:	Vp = 2028 m/sec	Vs = 1007 m/sec
18,0 – 21,0 m:	Vp = 2028 m/sec	Vs = 497 m/sec
21,0 – 29,0 m:	Vp = 2028 m/sec	Vs = 725 m/sec
> 29,0 m:	Vp = 2028 m/sec	Vs = 663 m/sec

STENDIMENTO SISMICO ST11

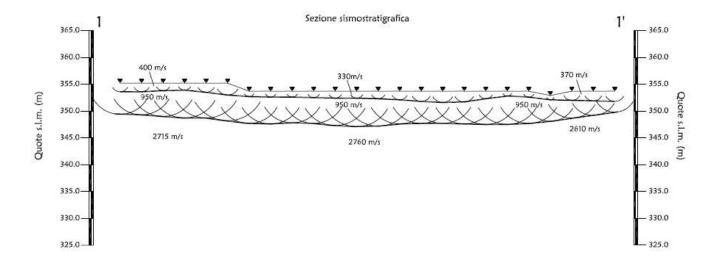
MISURE HVSR

Dalle misure effettuate vicino all'area oggetto di studio si rileva l'assenza di picchi di risonanza che possano far supporre la presenza di una superficie rifrangente in profondità.

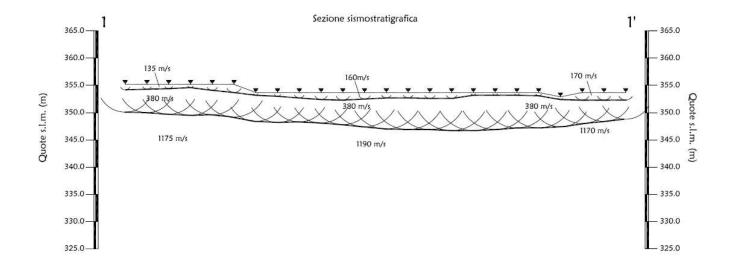
PROVE CPT

Prof. (m)	CPT 1		CPT 2		CPT 3
	01 1 1		01 1 2		01 1 0
0,2			0		
0,4	0		U		0
0,6				11	U
0,8				1	
1,0			1		
1,2	1				1
1,4					
1,6					2
1,8					2
2,0			2		4
2,2					1
2,4	2				3
2,6		1		1	
2,8					
3,0		1			
3,2					
3,4	4		1		
3,6	1				
3,8					
4,0	•				
4,2	2				
4,4			3	ĺ	
4,6	4				
4,8	1				
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0					
5,2	3				

LEGENDA


- O Coltre di copertura caratterizzata da terreno agricolo e/o terreno di riporto
- 1 Terreni a prevalenza limosa o limoso argillosa di natura essenzialmente coesiva
- **2** Terreni a prevalenza sabbiosa o limoso sabbiosa di natura prevalentemente granulare
- 3 Terreni a prevalenza ghiaiosa o ghiaioso sabbiosa – la prevalenza di elementi grossolani impedisce l'avanzamento della prova CPT

		_			
Prof. (m)	CPT 1		CPT 2		CPT 3
0,2		<u> </u>			
0,4					
		FON	DAZIONE (- 1,	0 m)	
0,6					
1,0					
1,2			41-		4-
1,4	1a		1b		1c
1,4					20
1,8					2c
2,0			2b		2-
					3с
2,2	2a				GHIAIE
2,6 2,8					
2,8					
3,0					
3,2					
3,4	3a		3b		
3,6	4				
3,8					
3,2 3,4 3,6 3,8 4,0 4,2					
4.4			GHIAIE	J	
4,6	F				
4,8	5				
4,6 4,8 5,0					
5,2	GHIAIE				


PARAMETRI

1a Cu = 10,7 t/m² - ϕ = 0° 1b Cu = 17,3 t/m² - ϕ = 0° 1c Cu = 8,5 t/m² - ϕ = 0° 2a C' = 0,0 t/m² - ϕ = 33° 2b C' = 0,0 t/m² - ϕ = 33° 2c C' = 0,0 t/m² - ϕ = 33° 3a Cu = 12,0 t/m² - ϕ = 0° 3b Cu = 15,0 t/m² - ϕ = 0° 3c Cu = 26,4 t/m² - ϕ = 0° 4 C' = 0,0 t/m² - ϕ = 30° 5 Cu = 48,0 t/m² - ϕ = 0°

STENDIMENTO SISMICO - ONDE P

STENDIMENTO SISMICO - ONDE SH

CLASSIFICAZIONE DI PERICOLOSITA' E FATTIBILITA'
AI SENSI DEL "REGOLAMENTO DI ATTUAZIONE
DELL'ARTICOLO 104 DELLA LEGGE REGIONALE 10
NOVEMBRE 2014, N.65 (NORME PER IL GOVERNO DEL
TERRITORIO) CONTENENTE DISPOSIZIONI IN MATERIA DI
INDAGINI GOLOGICHE, IDRAULICHE E SISMICHE"

* * * * * * * * * * *

Carte di pericolosità e fattibilità

A) VALUTAZIONE DI PERICOLOSITA'

Dalle indagini e cartografia di riferimento per il PIANO ATTUATIVO COMPARTO 15D2 emergono le seguenti caratteristiche:

Elementi per la valutazione degli aspetti geologici

- Zona omogenea dal punto di vista geologico e litologico, depositi lenticolari eterogenei di origine fluviale e torrentizia,
- Nella zona sono indicati depositi di ghiaie e sabbie a granulometria eterogenea

Elementi per la valutazione degli aspetti geomorfologici

- Non sono presenti processi morfogenetici attivi ne fenomeni di dissesto geomorfologico, ne attivo ne potenziale,
- pendenze inferiori al 10%

Elementi per la valutazione degli aspetti geologico tecnici

- I sondaggi di riferimento hanno evidenziato alternanza di terreni limoso argillosi con terreni ghiaioso ciottolosi fino a oltre 70 m di profondita'.
- I terreni di natura granulare presentato un buon grado di addensamento
- I terreni di natura coesiva presentano un buon grado di compattezza

Elementi per la valutazione degli aspetti idraulici

Area a pericolosità da alluvioni rare o di estrema intensità (P1), come classificata negli atti di pianificazione di bacino in attuazione del d.lgs.49/2010

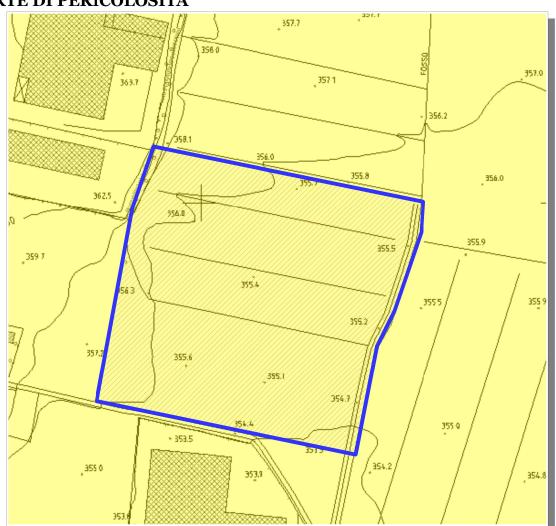
Elementi per la valutazione degli aspetti connessi alla risorsa idrica sotterranea

 Il sondaggio S6 ha messo in evidenza la presenza di un acquifero alla profondità di -4,0 m.

Elementi per la valutazione degli effetti sismici locali

- Zona suscettibili di amplificazioni locali
- Microzonazione sismica di livello 3:
 - intervallo frequenze 0.1-0,5 sec: ZONA 1.4 (1.25<FA< =1.44): include buona parte dell'area sud della pianura del T. Archiano in presenza di coperture alluvionali di limitato spessore (< 20m) al di sopra del substrato lapideo meno competente e buona parte della pianura del T. Archiano a N di Bibbiena dove la presenza di materiale fluvio-lacustre cementato prossimo alla superficie non dà luogo a contrasti di impedenza con litotipi lapidei del substrato profondi.

Per quanto riguarda l'intervallo di periodi 0.4-0.8 sec. e 0.7-1.1 sec. le aree con i valori di FA relativamente più elevati sono ancora quelli corrispondenti alla porzione più antica dell'abitato di Bibbiena, oltre alla parte di abitato che si distende in direzione nord sull'alto topografico. Si riscontrano valori di FA prossimi a 1.8 (in particolare per l'intervallo di periodi 0.7-1.1 sec.). In questo range di intervalli sono molto bassi gli effetti di amplificazione in tutte le aree caratterizzate da spessori di coperture modesti (< 20 m) al di sopra del substrato lapideo.


Si possono dare quindi le seguenti classificazioni di pericolosità:

Pericolosità geologica media (G.2): aree con elementi geomorfologici, litologici e giaciturali dalla cui valutazione risulta una bassa propensione al dissesto.

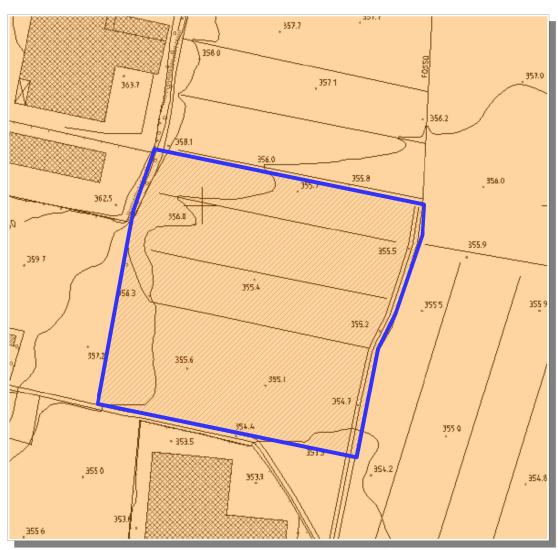
Pericolosità idraulica bassa (I.1): Aree a pericolosità da alluvioni rare o di estrema intensità (P1), come classificate negli atti di pianificazione di bacino in attuazione del d.lgs.49/2010.

Pericolosità sismica locale elevata (S.3): zone stabili suscettibili di amplificazioni locali con fattore di amplificazione (Fx) > 1.4.

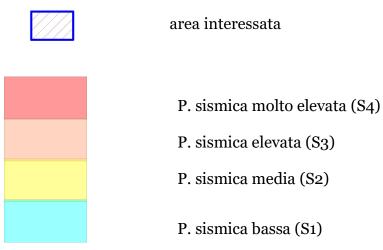
B) CARTE DI PERICOLOSITA'

CARTA DELLE AREE A PERICOLOSITA'GEOLOGICA

(1:2.000)



CARTA DELLE AREE A PERICOLOSITA' IDRAULICA


(1:2.000)

	area interessata
	P. idraulica molto elevata (I4)
	P. idraulica elevata (I3)
	P. idraulica media (I2)
	P. idraulica bassa (I1)

CARTA DELLE AREE A PERICOLOSITA' SISMICA

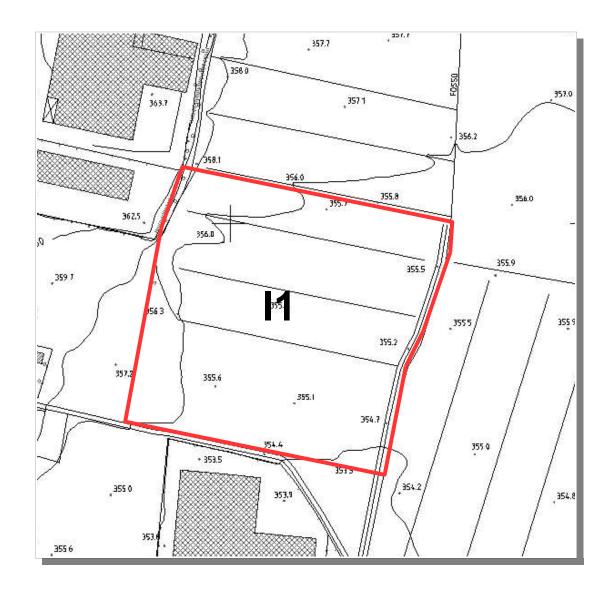
(1:2.000)

C) CONDIZIONI DI FATTIBILITA'

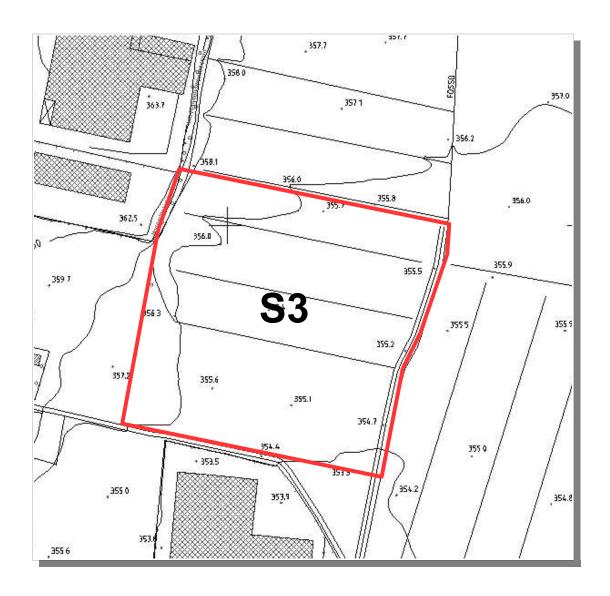
Sulla base della classificazione di pericolosità attribuita sulla base di quanto stabilito dal "Regolamento di attuazione dell'articolo 104 della legge regionale 10 NOVEMBRE 2014, n. 65 (Norme per il governo del territorio) in materia di indagini geologiche." ed in considerazione delle previsioni urbanistiche relative all'area, si possono attribuire le seguenti condizioni di fattibilità:


Classe G2 di FATTIBILITA' GEOLOGICA. le condizioni di attuazione sono indicate in funzione delle specifiche indagini da eseguirsi a livello edificatorio al fine di non modificare negativamente le condizioni ed i processi geomorfologici presenti nell'area.

Classe II di FATTIBILITA' IDRAULICA non è necessario indicare specifiche condizioni di fattibilità ai fini della valida formazione del titolo abilitativo all'attività edilizia.


Classe S3 di FATTIBILITA' SISMICA, nelle zone stabili suscettibili di amplificazione locale, caratterizzate da un alto contrasto di impedenza sismica tra copertura e substrato rigido o entro le coperture stesse entro alcune decine di metri, sono raccolti i dati bibliografici oppure è effettuata una specifica campagna di indagini geofisiche (quali, ad esempio, profilisismici a riflessione o rifrazione, prove sismiche in foro e, ove risultino significative, profili MASW) e geognostiche (quali, ad esempio, pozzi o sondaggi, preferibilmente a carotaggio continuo) che definisca spessori, geometrie e velocità sismiche dei litotipi sepolti per valutare l'entità del (o dei) contrasti di rigidità sismica tra coperture e bedrock sismico o entro le coperture stesse.

D) CARTE DI FATTIBILITA'


FATTIBILITA' GEOMORFOLOGICA (1:2.000)

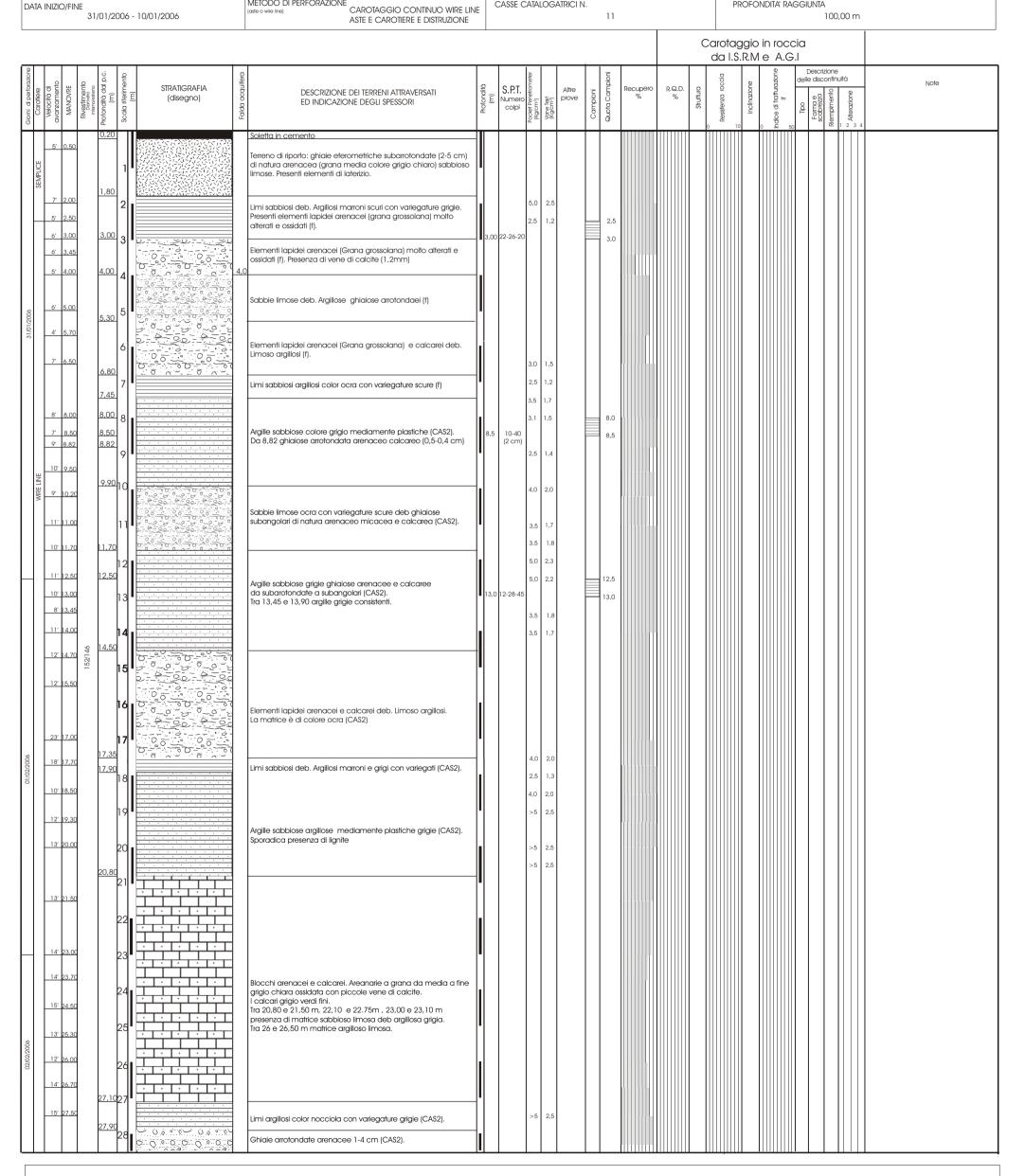
FATTIBILITA' IDRAULICA (1:2.000)

FATTIBILITA' SISMICA (1:2.000)

ELENCO INDAGINI DI RIFERIMENTO ALLEGATE:

- Sondaggio S6: Stratigrafia, DownHole, Analisi di laboratorio
- Stesa sismica a rifrazione St11
- Indagine geofisica di superficie onde P-Sh
- Prove penetrometriche CPT

CANTIERE


QUOTA ASS. P.C.

356 m.s.l.m.

PROGRAMMA DOCUP TOSCANA 2000-2006 ASSE 2 MISURA 2.8.3

REGIONE TOSCANA: DIREZIONE GENERALE POLITICHE TERRITORIALI E AMBIENTALI-SERVIZIO SISMICO REGIONALE PROVINCIA DI AREZZO COMUNE DI BIBBIENA

GEOLOGO INCARICATO PER L' ASSISTENZA AL SONDAGGIO SONDATORE - IMPRESA ESECUTRICE GEOLOGO DELL' IMPRESA Loc. Pianacci-Bibbiena 6 (pag1/4) Dott. Geologo Nicola GIOVANNINI Dott. Geologo Matteo De Palma Sig. Mario Gambuci- METODO COORDINATE X \ TIPO DI SONDA TIPO DI FLUIDO STRUMENTAZIONE IN FORO E SUA PROFONDITA' opia motrice) CMV 900 A 1.726.060 - 4.844.016 ACQUA. TUBO IN PVC PER PROVE DH fino a 99,00 m METODO DI PERFORAZIONE CASSE CATALOGATRICI N. PROFONDITA' RAGGIUNTA

NOTE

PROGRAMMA DOCUP TOSCANA 2000-2006 ASSE 2 MISURA 2.8.3

REGIONE TOSCANA: DIREZIONE GENERALE POLITICHE TERRITORIALI E AMBIENTALI-SERVIZIO SISMICO REGIONALE PROVINCIA DI AREZZO COMUNE DI BIBBIENA

CANTIERE Loc. Pianaco	si-Bibbiena	SONDAGGIO N. 6 (pag 2/4)	GEOLOGO INCARICATO PER L' ASSISTENZA AL SONDAGGIO Dott. Geologo Nicola GIOVANNINI		SONDATORE - IMPRESA ESECUTRICE Sig. Mario Gambuci- METODO
QUOTA ASS. P.C. 356 m.s.l.m.	COORDINATE X Y 1.726.060 - 4.844.016	TIPO DI SONDA (maica, modello, coppia motrice) CMV 900 A	TIPO DI FLUIDO ACQUA.	STRUMENTAZIONE IN FORO E SUA PROF TUBO IN PVC PER PROVE DH fino a 99	
DATA INIZIO/FINE	1,000/ 10/01/000/	METODO DI PERFORAZIONE (aste o wire line) CAROTAGGIO CONTINUO WIRE LINE	CASSE CATALOGATRICI N.	PROFONDITA' RAGGIUNTA	

31/01/2006 - 10/01/2006 11 100,00 m ASTE E CAROTIERE E DISTRUZIONE Carotaggio in roccia da I.S.R.M e A.G.I Descrizione lle discontinuità Note STRATIGRAFIA S.P.T. R.Q.D. DESCRIZIONE DEI TERRENI ATTRAVERSATI (disegno) ED INDICAZIONE DEGLI SPESSORI Shiaie arrotondate arenacee 1-4 cm (CAS3) 0.000000 Argille sabbiose colore grigio ghiaiose.(CAS2) e ghiale sono subangolari arenaceo calcareo (1-3 cm) Limi argillosi deb. sabbiosi nocciola con livelletti sabbiosi grigi (CAS2) Argille sabbiose marrone chiaro ghiaiose.(CAS3) Le ghiaie sono subarrotondate arenaceo calcareo (2-4 cm) Limi sabbiosi marroni molto consistenti (CAS2) Argille sabbiose colore grigio molto consistenti(CAS2) Elementi lapidei arenacei e calcarei (2-4 cm) deb. Sabbiosi (CAS) Sabbia grossolana sciolta (CAS2) Argille sabbiose colore grigio molto consistenti(CAS2) Da 36,50 m argille molto consistenti 2,5 36,80 Ghiaie subarrotondate (2-4 cm) calcare argillose (CAS2). Argille grigio scure con intercalazioni di livelli limoso-sabbiosi 37,90 marroni (CAS2). Da 37,90 m argille ghiaiose subarrotondate grigio chiaro e verdi. 38,45 Ghiaie subarrotondate (0,5-5 cm) calcare raramente di natura arenacea a grana media grigio chiare (CAS2). Argille sabbiose grigie con inclusi calcarei grigio verdi (CAS2) 0,10 Limi argillosi deb. sabbiosi grigio verdi, consistenti (CAS2). Tra 40,90 m e 41,00 m elemento lapideo di natura calcarea. Argille con scarsissima presenza di elementei calcarei (CAS2)

NOTE			

PROGRAMMA DOCUP TOSCANA 2000-2006 ASSE 2 MISURA 2.8.3

REGIONE TOSCANA: DIREZIONE GENERALE POLITICHE TERRITORIALI E AMBIENTALI-SERVIZIO SISMICO REGIONALE PROVINCIA DI AREZZO COMUNE DI BIBBIENA

CANTIERE Loc. Pianacci-Bibbiena		SONDAGGIO N. 6 (pag 3/4)	GEOLOGO INCARICATO PER L'ASSISTENZA AL SONDAGGIO Dott. Geologo Nicola GIOVANNINI	GEOLOGO DELL' IMPRESA Dott. Geologo Matteo De Palma	SONDATORE - IMPRESA ESECUTRICE Sig. Mario Gambuci- METODO
QUOTA ASS. P.C. 356 m.s.l.m.	COORDINATE X Y 1.726.060 - 4.844.016	TIPO DI SONDA (marca, modello, coppia motrice) CMV 900 A	TIPO DI FLUIDO ACQUA.	STRUMENTAZIONE IN FORO E SUA PRO TUBO IN PVC PER PROVE DH fino a S	
DATA INIZIO/FINE 31/01/2006 - 10/01/2006		METODO DI PERFORAZIONE CAROTAGGIO CONTINUO WIRE LINE ASTE E CAROTIERE E DISTRUZIONE	CASSE CATALOGATRICI N.	PROFONDITA' RAGGIUNTA 100,00 m	

31/01/2000 - 10/01/200	ASTE E CAROTIERE E DISTRUZIONE								Caroto	ıaaio	in ro	occio		JU,UU r					
		1		1	1. T	_	_	Τ.				da I.	S.R.M	e A	A.G.I	Descrizio	ne		_
	ATIGRAFIA	ED INDICAZIONE DEGLI SPESSORI	Profondità (m)	S.P.T. Numero colpi	Pocket Penetrometer (Kg/cm²)	(Kg/cm ²) pro	tre ove	Campioni	Recuperd %	R.Q.D. %	Struttura	e Resistenza roccia	Inclinazione	o Indice di fratturazione	± 50	elle discon	Alterazione 1 2 3	Note	
3 4 5 6 6 7 7 8 9 10 11 12 2 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16		Elementi lapidei arenacei e calcarei.												U I	50		_ 1		
20 21 22 23 24 25		Argille con scarsissima presenza di elementei calcarei (CAS2)																	
26 ======= ============================																			

NOTE			

PROVINCIA DI AREZZO

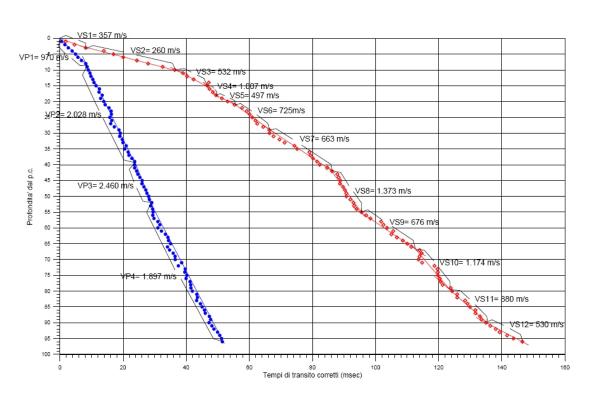
PROGRAMMA DOCUP TOSCANA 2000-2006 ASSE 2 MISURA 2.8.3

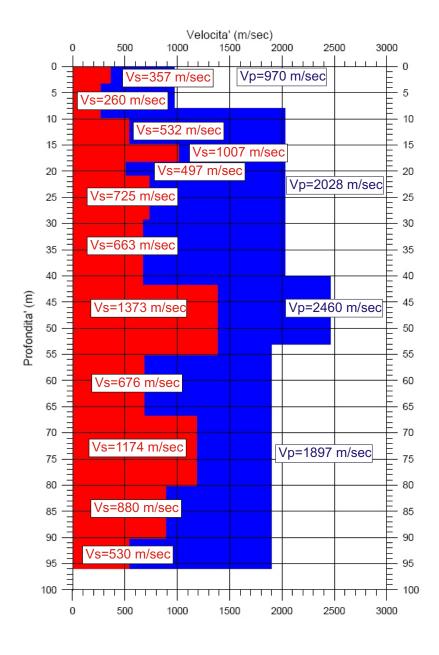
IICHE	IFIXIXIIC	IKIALI E	AMBIFI	VIALI-SE	:IXVIZIO	SISIVIIC)O KI	EGIO	INALE
C	OMUNE	DI BIBE	BIFNA						

CANTIERE Loc. Pianacci-Bibbiena		SONDAGGIO N. 6 (pag 4/4)	GEOLOGO INCARICATO PER L'ASSISTENZA AL SONDAGGIO Dag 4/4) Dott. Geologo Nicola GIOVANNINI		SONDATORE - IMPRESA ESECUTRIC Sig. Mario Gambuci- METODO
QUOTA ASS. P.C. 356 m.s.l.m.		TIPO DI SONDA (marca, modello, coppia motrice) CMV 900 A	TIPO DI FLUIDO ACQUA.	STRUMENTAZIONE IN FORO E SUA PR TUBO IN PVC PER PROVE DH fino a	
DATA INIZIO/FINE	11/2006 - 10/01/2006	METODO DI PERFORAZIONE CAROTAGGIO CONTINUO WIRE LINE	CASSE CATALOGATRICI N.	PROFONDITA' RAGGIUNTA	

Carotaggio in roccia da I.S.R.M e A.G.I STRATIGRAFIA (disegno) R.Q.D. % S.P.T. Numero colpi DESCRIZIONE DEI TERRENI ATTRAVERSATI ED INDICAZIONE DEGLI SPESSORI Argille con scarsissima presenza di elementei calcarei (CAS2) Argille deb. Sabbiose molto consistenti grigie (CAS2)

NOTE			




Dir. Gen. delle Politiche Territoriali e Ambientali **SERVIZIO SISMICO REGIONALE**

DITTA ESECUTRICE: Georisorse Italia s.a.s.

DATA ESECUZIONE: 06/06/2006

Programma VEL - Comune di: Bibbiena - Località: Soci - DHS6

Via Pastrengo, 9 – 24068 Seriate (Bg) Tel: 035 537740 – Fax: 035 5377401 E-mail: ismesgeo@tin.it Internet: www.ismesgeo.it

Comune di BIBBIENA (AR); frazioni di Pianacci e Soci

PROVE GEOTECNICHE DI LABORATORIO

Prog. L001; Doc. RAT 111/2006

Redatto da:	Andrea Saccenti	29/03/06
Rivisto e Approvato da:	Sergio Airoldi	

LISTA DI DISTRIBUZIONE

Nominativo	Riferimento

STORIA DELLE MODIFICHE

Data	Versione	Descrizione cambiamenti	Riferimento

Documenti in ingresso

2

1.	PREMESSA	. 4
2.	ATTIVITÀ DI LABORATORIO	. 4
2.1.	Campioni esaminati	. 4
2.2.	Programma di prova	. 4
2.3.	Tipi di prove eseguite	. 4
2.4.	Conservazione, apertura e descrizione dei campioni	. 5
2.4.1.	Conservazione ed apertura dei campioni indisturbati	. 5
2.4.2.	Descrizione geotecnica dei terreni (DC)	. 5
2.5.	Prove di classificazione	
2.5.1.	Determinazione del contenuto d'acqua (w)	. 7
2.5.2.	Determinazione del peso di volume umido (γ)	
2.5.3.	Determinazione dei Limiti di liquidità e di plasticità (LLP).	. 7
2.5.4.	Analisi Granulometrica (Gr)	. 7
2.5.5.	Densità dei grani (Gs)	. 7
2.6.	Prove meccaniche	
2.6.1.	Preparazione di provini per prove meccaniche	
2.6.2.	Prova di consolidazione edometrica a carico controllato (Edo IL)	
2.6.3.	Prova di taglio anulare consolidata anisotropicamente drenata (RS CKoD)	
2.6.4.	Prova triassiale consolidata in condizioni Ko non drenata (Tx CK0U)	
2.6.5.	Prova in cella triassiale consolidata anisotropicamente non drenata (Tx	
	CK0U) con misura delle deformazioni locali	
2.6.6.	Misure di velocità di onde elastiche (Vtl)	
2.6.7.	Prova di colonna risonante (RC)	13
3.	TABELLE	14
4.	FIGURE	17

ELENCO TABELLE

ELENCO FIGURE

Allegato A – Certificati prove di laboratorio

Allegato B – Schede di valutazione campioni

1. PREMESSA

2. ATTIVITÀ DI LABORATORIO

2.1. Campioni esaminati

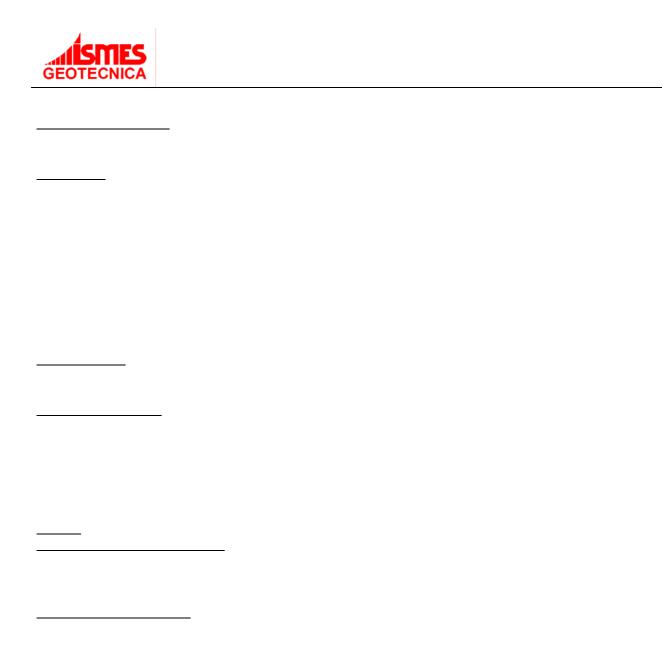
2.2. Programma di prova

2.3. Tipi di prove eseguite

•

•

• γ


•

•

•

2.4.	Conservazione, apertura e descrizione dei campioni
2.4.1.	Conservazione ed apertura dei campioni indisturbati
2.4.2.	Descrizione geotecnica dei terreni (DC)
_	
_	

2.5.	Prove di classificazione
2.5.1.	Determinazione del contenuto d'acqua (w). - °
2.5.2.	Determinazione del peso di volume umido (γ)
2.5.3.	Determinazione dei Limiti di liquidità e di plasticità (LLP).
2.5.4.	Analisi Granulometrica (Gr)
2.5.5.	Densità dei grani (Gs)
2.6.	Prove meccaniche
2.6.1.	Preparazione di provini per prove meccaniche

2.6.2.	Prova di consolidazione edometrica a carico controllato (Edo IL)
	_
•	
•	
•	
	α
	u

α

2.6.3. CKoD	Prova))	di	taglio	anulare	consolidata	anisotropicamente	drenata	(RS
	<u> </u>						τ	
	δ				δ		τ	σ,

2.6.4.	Prova	triassiale c	onsolidata i	n condizioı	ni Ko non dr	enata (Tx Ch	(0U)
			3		3		
		σ σ	σ σ				
σ σ				Δ		3	
2.6.5.	Prova ir CK0U) c	n cella triass on misura d	iale consoli elle deforma	idata aniso azioni loca	otropicament li	te non drena	ıta (Tx
	_						
						٥,	

•			

•

•

•

•

•

•

•

_____- I

	_	$arepsilon_{\mathbf{a}} arepsilon_{\mathbf{r}}$		σ' _a σ' _ι				
		o _a o _r						
σ' _a			σ' _a			ε _{a e} ε _r		
		$arepsilon_{\mathbf{a}}$			q	σ_a - σ_r		E
	Δ						q ϵ_a	ε _a
2.6.6.	Misure di velo	cità di onde e	lastiche (V	tl)				
•								
•								
	-							
		$ ho^{\cdot}$	ρ					

2.6.7. Prova di colonna risonante (RC)

• % •

<u>+</u> • <u>+</u>

•

• • %

<u>+</u> •

• % •

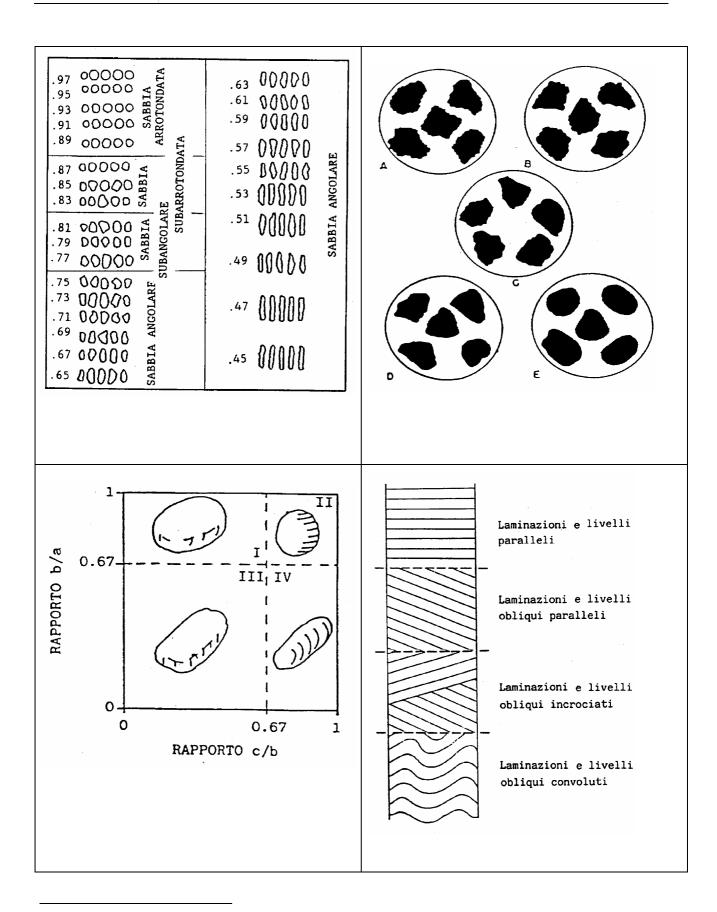
γ

 $\begin{matrix} G & D & \gamma \\ \tau & \end{matrix}$

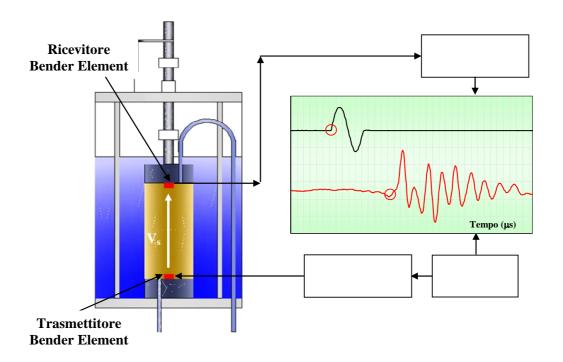
3. TABELLE

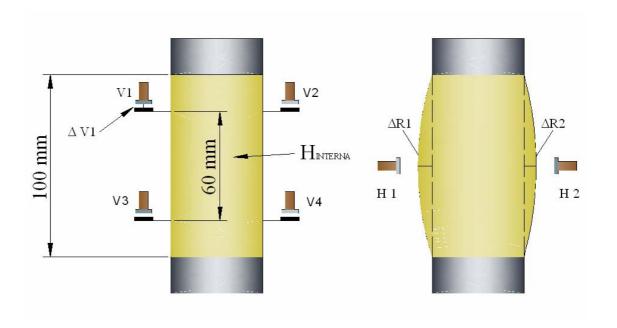
CANTIERE	SONDAGGIO	CAMPIONE	Profondità (m)	DC	w	G _a	G_8	GRvaglio	GRsedim	LLP	Ricostruzione	EDO	CRS	DS/RS	ממ	CIU-CkoU	CID-Ck ₀ D	RC	TS	TX_Ciclica	ALT	TX_Locali	Relazione
Bibbiena (Soci)	S7	SH1	3.45-3.95	1	1	1	1	1	1	1	1	1		3									
Bibbiena (Soci)	S7	SH2	3.95-4.45	1	1	1	1	1	1	1	1							1					
Bibbiena (Pianacci)	S6	SH1	2.50-3.00	1		1																	
Bibbiena (Pianacci)	S6	SH2	8.00-8.50	1	1	1	1	1	1	1		1				2					2		
Bibbiena (Pianacci)	S6	SH3	12.5-13.0	1	1	1	1	1	1	1		1				2		1				1	
																			Ļ				
			Tot prove	5	4	5	4	4	4	4	2	3	0	3	0	4	0	2	0	0	2	1	1

LEGE	NDA							
DC	Apertura e descrizione campione							
W	Contenuto d'acqua							
	Peso di volume							
Gs	Peso specifico dei grani							
GR_vaglio	Granulometria per vagliatura							
GR_sedim	Granulometria per sedimentazione							
LLP	Limiti liquidi e plastici							
EDO	Edometro ad incremento di carico (IL)							
CRS	Edometro a velocità di deformazione costante (CRS)							
DS/RS	Taglio diretto (DS) o taglio anulare (RS)							
UU	Triassiale non consolidata e rottura non drenata							
CIU-CKOU	Prova triassiale consolidata isotropicamente/anisotrop. e rottura non drenata							
CID-CKOD	Prova triassiale consolidata isotropicamente/anisotrop. e rottura drenata							
RC	Colonna risonante							
TS	Taglio torsionale ciclico							
TX_CICLICA	Prova triassiale ciclica							
VTL	Misura dei tempi delle velocità di propagazione delle onde di taglio ${ m V}s$							
TX_LOCALI	Prova triassiale consolidata isotropicamente/anisotrop., rottura drenata/non drenata con misura delle deformazioni							



<u>Classi di utilizzab</u>	ilità dei campioni per prove d	<u>li laboratorio</u>	
Classificazione dell'intervall	dei grani in funzione o granulometrico	Classificazione dei materiali in base a	alla consistenza
D. 61			
Definizione dei m	nateriali in funzione delle fui	nzioni granulometriche presenti	




4. FIGURE

Allegato A Certificati di prova

FUSTELLA FERRO

18 cm

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

N° verbale di accettazione: 021/2006

Dati Generali di Campionamento

Data prelievo: 31/01/2006
Attrezzatura sondaggio ROTAZIONE
Attrezzatura prelievo: SHELBY
Modalità prelievo: PRESSIONE

Committente: REGIONE TOSCANA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH1
Profondità prelievo [m]: 2.50 - 3.00
Prova: Dc
Data fine descrizione: 29/03/2006

N° certificato di prova:

Tipo contenitore:

Dati Generali del Campione

Data arrivo in laboratorio: 27/02/2006

Data estrusione campione: 01/03/2006

Condizioni contenitore: SCARPA AMMACCATA

Forma campione CILINDRICO Dimensioni Campione: Φ = 8.4 cm L=

Classe del terreno: CLASSE 1

Descrizione

Il campione presenta infiltrazioni .di paraffina

2.76m-2.94m: Limo argilloso debolmente sabbioso f bruno (10yr 5/3).

Incluso di ghiaia Imax 85mm.

	Penetr	ometro	Scisso	metro	
Schizzo	+	//	+	//	Prove eseguite
	[MPa]	[MPa]	[MPa]	[MPa]	
2.70					
2.73 2.76	;				
2.77					
2.80					
2.83					γ1 Ft1
2.87					
2.90					
2.93					
2.96					
3.00					
3.03					
3.06					
3.10					
3.13					
3.16 3.20					
3.23					
3.26					
3.29					
3.33					
3.36					
3.39					
3.43					
3.46					

Richiami

γ = Peso di volume

Ft = Fotografia

CARATTERISTICHE GENERALI DEL CAMPIONE

rev.	data emiss.	sperimentatore	responsabile				
0	29/03/2006	Pezzotta	Airoldi				

N° verbale di accettazione: 021/2006

Committente: REGIONE TOSCANA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH1
Profondità prelievo [m]: 2.50 - 3.00
Prova: Cg
Data fine descrizione: 29/03/2006

Prove	Profondità	Risultati prove	Riferimento procedure	N° certificato di prova
γ1	2.76m - 2.94m	Peso di volume = 19.53 [kN/m3]	PT-LMT-00021 REV. 1	

Rev	data emiss.	eseguito da	elaborato da			
0		Pezzota	Angeloni			

Committente:	COMUNE DI BIBBIENA
Cantiere:	PIANACCI
Sondaggio:	S6
Campione:	SH1
Profondità prelievo [m]:	2.76 - 2.94
Data prova:	01/03/06
•	

50 cm

rev.	data emiss.	sperimentatore	responsabile		
0	30/03/2006	Pezzotta	Airoldi		

N° verbale di accettazione: 021/2006

Dati Generali di Campionamento

Data prelievo: 31/01/2006
Attrezzatura sondaggio ROTAZIONE
Attrezzatura prelievo: SHELBY
Modalità prelievo: PRESSIONE

Committente:REGIONE TOSCANACantiere:PIANACCISondaggio:\$6Campione:SH2Profondità prelievo [m]:8.00 - 8.50Prova:DcData fine descrizione:30/03/2006

N° certificato di prova:

Dati Generali del Campione

Data arrivo in laboratorio: 27/02/2006

Data estrusione campione: 01/03/2006

Data estrusione campione: 01/03/2006 Condizioni contenitore: BUONE Tipo contenitore: FUSTELLA FERRO

Forma campione CILINDRICO

Dimensioni Campione: Φ = 8.48 cm L=

Classe del terreno: CLASSE 4

Descrizione

8.00m-8.50m: Sabbia m/f con limo argillosa grigio (5y 5/1) duro reagente con HCl. Livello planare parallelo di ghiaia m/f debolmente sabbiosa (5.21m-5.38m).

		Penetr	ometro	Scisso	metro	
Schizzo		+	//	+	//	Prove eseguite
8.00 8.00		[MPa]	[MPa]	[MPa]	[MPa]	·
8.00	8.00					
8.03						
8.07						
8.10						Edo IL1
8.13		0.50	0.50			
8.17						Tx CK0U1 LLP1 Gr1 Gs1
8.20						
8.23		0.50	0.50			γ1 w1 Ft1
8.26						
8.30						
8.33						
8.36						
8.40						
8.43						Tx CK0U2 Vtl1 Vtl2
8.46						
8.49						
8.53	8.50					
8.56						
8.59						
8.63						
8.66						
8.69						
8.73						
8.76						

Richiami

 γ = Peso di volume

w = Umidità

Ft = Fotografia

Edo IL = Edometro incrementi di carico

Tx CK0U = Triassiale consolidata anisotropica (linea K0) rottura non drenata

LLP = Limiti di liquidità e plasticità

Gr = Analisi Granulometrica

Gs = Peso specifico dei grani

Vtl = Misura velocità onde elastiche

1

CARATTERISTICHE GENERALI DEL CAMPIONE

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

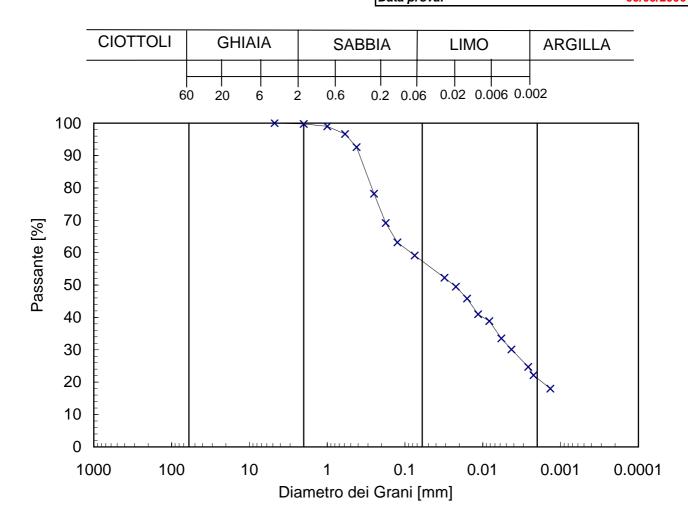
N° verbale di accettazione: 021/2006

Committente: REGIONE TOSCANA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH2
Profondità prelievo [m]: 8.00 - 8.50
Prova: Cg
Data fine descrizione: 29/03/2006

Prove	Profondità	Risultati prove	Riferimento procedure	N° certificato di prova
γ1	8m - 8.50m	Peso di volume = 20.26 [kN/m3]	PT-LMT-00021 REV. 1	
w1	8m - 8.50m	Umidità = 31 [%]	PT-LMT-00016 REV. 0	
LLP1	8.10m - 8.20m	Limite Liquido = 52 [%] Limite Plastico = 27 [%]	PT-LMT-00020 REV. 1	
Gs1	8.10m - 8.20m	Peso specifico dei grani = 2.720 [-]	PT-LMT-00019 REV. 1	

Rev	data emiss.	eseguito da	elaborato da		
0		Pezzota	Angeloni		

Committente:	COMUNE DI BIBBIENA
Cantiere:	PIANACCI
Sondaggio:	S6
Campione:	SH2
Profondità prelievo [m]:	8.00 - 8.50
Data prova:	01/03/06


rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

Normativa di riferimento: ASTM D422/90

N° certificato di prova:

N° verbale di accettazione: 021/2006

Committente: REGIONE TOSCANA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH2
Profondità prelievo [m]: 8.1 - 8.2
Prova: Gr 1
Data prova: 09/03/2006

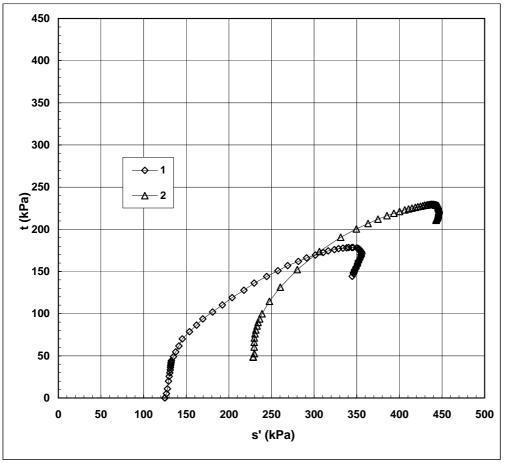
Prova		Profondità			< 0.075mm		GHIAIA SABBIA	SABBIA	LIMO	ARGILLA	D ₆₀	D ₅₀	D ₁₀	
	0,	da m	a m	[g]		%	%	%	%	%	%	[mm]	[mm]	[mm]
Gr 1	х	8.10			VIA UMIDA	59	-	0	42	36	21	8.4.E-02	2.4.E-02	

NOTE:

rev.	data emiss.	sperimentatore	responsabile					
0	29/03/2006	Capoferri	Airoldi					

Normativa di riferimento: ASTM D4767/95

N° certificato di prova:


N° verbale di accettazione: 021/2006

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH2
Profondità prova [m]: 8.1m - 8.49m
Prova: Tx CKOU
Provino: 1 2

Dati generali dei provini

rovino	Profondità	Dati iniziali				Dati a fine consolidazione								Dati a rottura				Metodo di preparazione - tipo		
Ţ		D	Н	γ	W	е	σ'_{a}	σ' _r	K	B.P.	В	ϵ_{a}	ϵ_{v}	е	DFC	٧	t	s'	ϵ_{a}	di materiale
-	m	mm	mm	kN/m ³	%	-	kPa	kPa	,	kPa	,	%	%		g	mm/m	kPa	kPa	%	-
1	8.15	50.0	97.2	19.84	24.2	0.66	124.9	125.0	1.00	400	0.95	0.0	0.0	0.66	1	0.020	178.4	341	10.13	
2	8.44	50.0	98.7	19.41	22.6	0.67	277.0	180.0	0.65	400	0.91	0.7	1.1	0.66	1	0.020	229.7	437	9.254	

Data prova:

Legenda:

D = diametro del provino

03/03/2006

H = altezza del provino

 γ = peso di volume umido

w = contenuto d'acqua

e = indice dei vuoti

 σ , σ' =tensioni totali ed efficaci

 $K = \sigma_r / \sigma_a$ a fine consolidazione

B.P. = back pressure

B = coefficiente di Skempton

 $\epsilon = \text{deformazioni}$

 $t = (\sigma_a - \sigma_r) / 2$ $s' = (\sigma'_a + \sigma'_r) / 2$

U = pressione interstiziale

DFC = durata consolidazione

v = velocità delle pressa

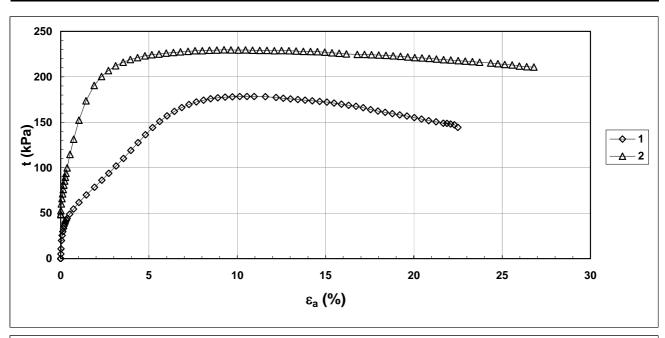
Subscritto 'a' = assiale

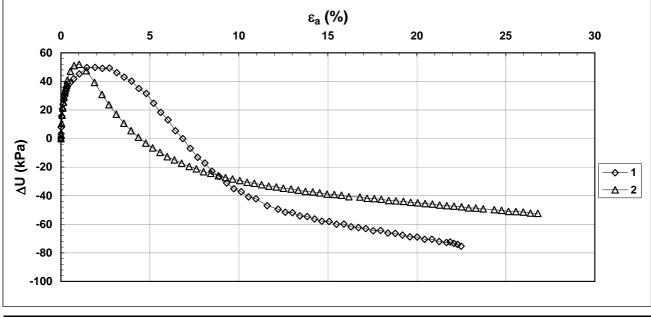
Subscritto 'r' = radiale

Subscritto 'v' = volumetrico

Schizzo a rottura

	2
3	4


Note:


Tx CK0U1: Il provino rigonfia sino ad una tensione isotropa di 125 kPa. Criterio di rottura = t max

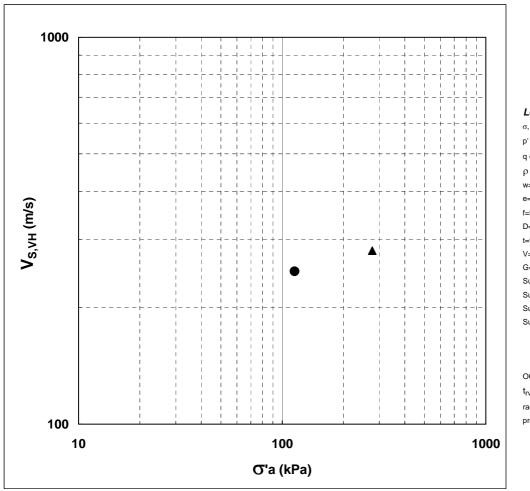
rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Capoferri	Airoldi

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH2
Profondità prova [m]: 8.1m - 8.49m
Prova: Tx CK0U
Provino: 1 2
Data prova: 03/03/2006

Note:

Tx CK0U1: Il provino rigonfia sino ad una tensione isotropa di 125 kPa. Criterio di rottura = t max

MISURA DELLA VELOCITA' ONDE DI TAGLIO IN PROVINI TRIASSIALI


rev.	data emiss.	eseguito da	elaborato da
0	29/03/2006	Saccenti	Saccenti

Procedura di riferimento: PT-LMT-159/01

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH2
Profondità prova l.m.m. [m]: 8.39-8.49
Prova: VTL
Provino: 2
Data prova: 03/03/06

TIPO DI ONDA: SVH (onda di taglio propagata in direzione verticale)

	Dati del p	orovino								Dati rela	tivi alla mi	sura		
misura	σ' _a	σ' _r	t _{rv}	p'	q	OCR	ρ	W	е	f	D	t	V _{S,VH}	G _{VH}
	kPa	kPa	min	kPa	kPa		g/cm ³	%	-	kHz	mm	μS	m/s	MPa
1	115.0	115.0	-	115.0	0.0	-	2.016	-	0.673	10.0	98.570	397.0	248.3	124.3
1	277.0	180.0	-	212.3	97.0	-	2.027	-	0.655	10.0	98.010	349.0	280.8	159.9

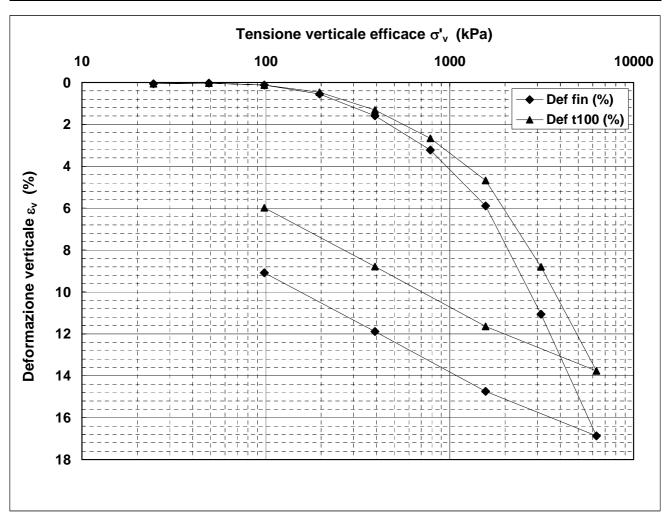
Legenda:

σ, σ' =tensioni totali ed efficaci $p' = (\sigma'_a + 2 \cdot \sigma'_r) / 3$ $q = (\sigma_a - \sigma_r)$ ρ =densità del terreno w=umidità del terreno e=indice dei vuoti f=frequenza onda di eccitazione D=distanza del percorso dell'onda t=tempo di percorso dell'onda V= velcocità dell'onda elastica G= modulo di taglio Subscritto 'a' = assiale Subscritto 'r' = radiale Subscritto 'S' = onda di taglio (Shear) Subscritto 'VH' = onda di taglio propagata in direzione verticale e con movimento delle particelle in in direzione orizzontale OCR=grado di preconsoliadzione t_{rv}= tempo trascorso dal raggiungimento del valore di pressione a cui si eseguono le misure

Note:

Misure dei tempi delle velocità delle onde di taglio eseguite sul provino S6_SH2_CK0U2

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi


N° certificato di prova:

N° verbale di accettazione: 021/2006

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH2
Profondità prova [m]: 8.05 - 8.10
Prova: Edo IL
Provino: 1
Data prova: 01/03/2006

Dati generali dei provini

ovino	fondità			Da	ıti iniz	iali				Dati a	fine	prova			
, F	Prof	D	Η	$\gamma_{\rm u}$	Wi	γ_{s}	е	GS	Н	$\gamma_{\rm u}$	\mathbf{W}_{f}	γ_{s}	е		Metodo di preparazione
-	m	mm	mm	kN/m ³	%	kN/m ³	ı		mm	kN/m ³	%	kN/m ³	-		
1	8.08	50.4	20.0	19.46	27.9	15.22	0.753	2.72	18.2	20.43	22.0	16.75	0.594		fustellazione

Legenda:

D = diametro del provino H = altezza del provino w = contenuto d'acquae = indice dei vuoti

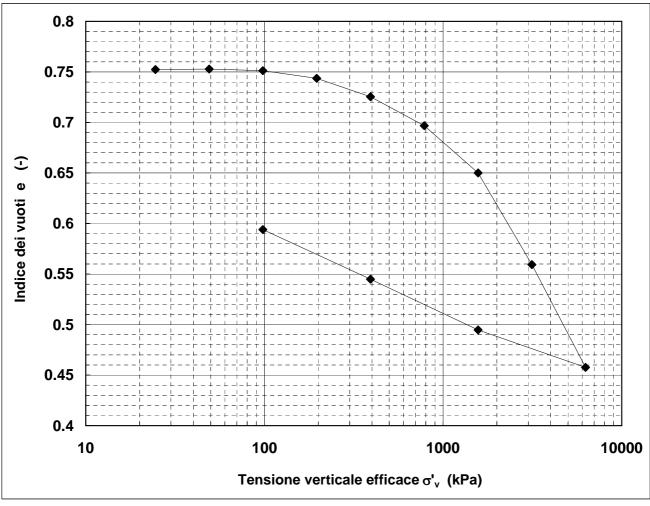
GS = Peso specifico dei grani Subscritto 'u' = umido Subscritto 'i' = iniziale Subscritto 'f' = finale

 γ = peso di volume

Subscritto 's' = secco

Note:

Il campione rigonfia sino ad un carico di 100 kPa



rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACC
Sondaggio: S6
Campione: SH2
Profondità prova [m]: 8.05 - 8.10
Prova: Edo IL
Provino: 1
Data prova: 01/03/2006

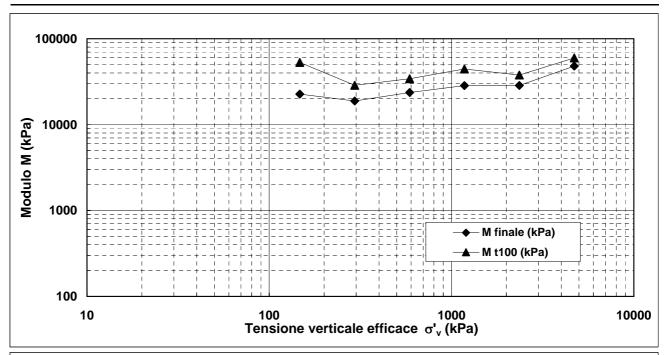
Dati generali dei provini

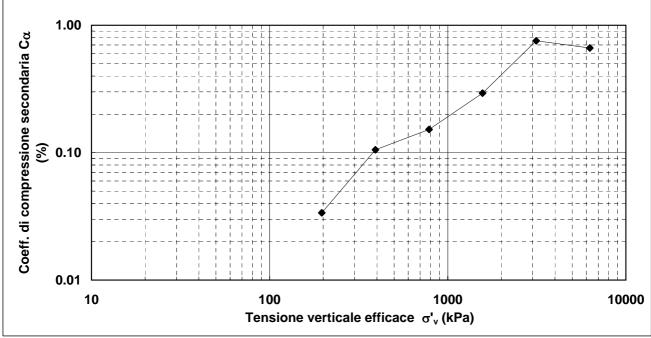
ovino	fondità			Da	ti iniz	iali				Dati a	a fine	prova			
Ę	Prof	D	Η	$\gamma_{\rm u}$	\mathbf{W}_{i}	γ_{s}	е	GS	Η	γ_{u}	W _f	γ_{s}	е		Metodo di preparazione
-	m	mm	mm	kN/m ³	%	kN/m ³	-	ı	mm	kN/m ³	%	kN/m ³	-		
1	8.08	50.4	20.0	19.46	27.9	15.22	0.753	2.72	18.2	20.43	22.0	16.75	0.594		fustellazione

Legenda:

D = diametro del provino H = altezza del provino

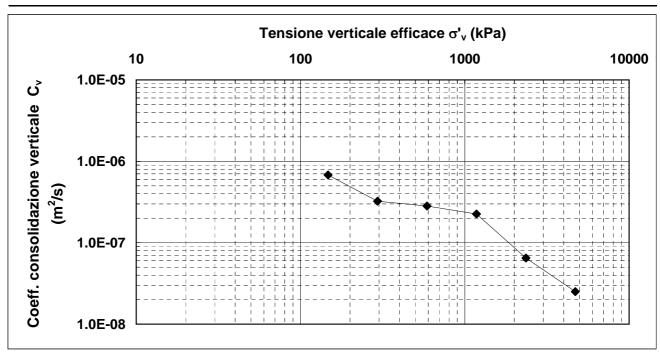
 γ = peso di volume

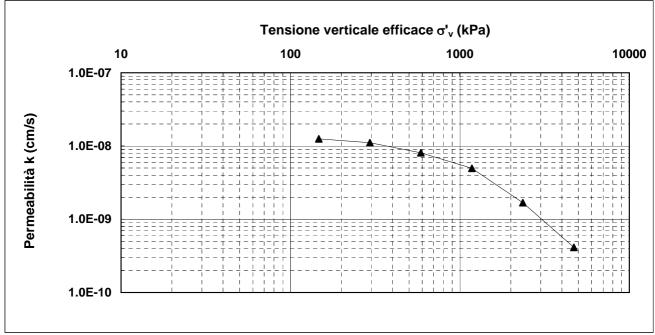

w = contenuto d'acquae = indice dei vuoti


GS = Peso specifico dei grani Subscritto 'u' = umido Subscritto 's' = secco Subscritto 'i' = iniziale Subscritto 'f' = finale

Note:

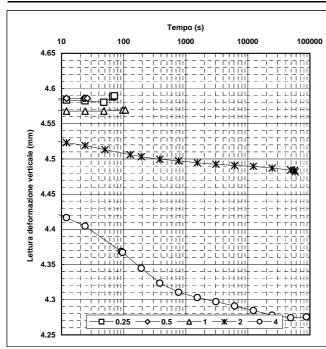
rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

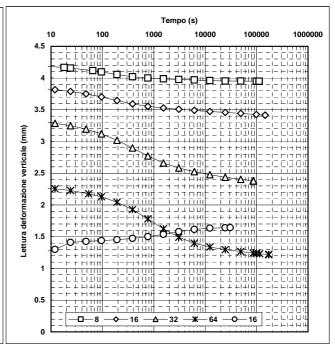


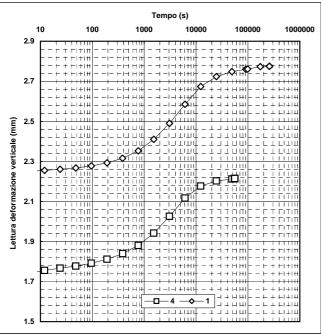


Note:		
-------	--	--

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi






|--|

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

|--|

PROVA DI CONSOLIDAZIONE EDOMETRICA Sesto foglio: tabella riassuntiva dati

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Normativa di riferimento: ASTM D2435/96

Tensione di prova (kPa)	24.5	49.1	98.1	196.2	392.4	784.8	1569.6	3139.2	6278.4
Tensione media (kPa)	12.3	36.8	73.6	3.6 147.2 294.3		588.6	1177.2	2354.4	4708.8
Defor. finale (mm)	0.011	0.006	0.024 0.111 0.318		0.318	0.645	1.178	2.213	3.374
Defor. finale (%)	0.06	0.03	0.12	0.55	1.59	3.22	5.89	11.07	16.87
Altezza finale (mm)	19.989	19.994	19.976	19.890	19.682	19.356	18.823	17.787	16.627
Indice vuoti (-)	0.752	0.753	0.751	0.744	0.725	0.697	0.650	0.559	0.458
Defor. t100 (%)	0.06	0.03	0.12	0.46	1.31	2.67	4.67	8.80	13.77
Cv (m/s)				6.8E-07	3.2E-07	2.824E-07	2.248E-07	6.473E-08	2.511E-08
M t100 (kPa)				53057	28646	34245.42	44419.552	37717.479	59701.524
k (cm/s)				1.3E-08	1.1E-08	8.091E-09	4.964E-09	1.683E-09	4.127E-10
M finale (kPa)				22654.9	18842.7	23626.1	28499.4	28530.9	48114.6
C _{\alpha} (%)				0.03	0.11	0.15	0.29	0.76	0.66

Tensione di prova (kPa)	1569.6	392.4	98.1			
Tensione media (kPa)	3924.0	981.0	245.3			
Defor. finale (mm)	2.950	2.378	1.817			
Defor. finale (%)	14.75	11.89	9.09			
Altezza finale (mm)	17.051	17.622	18.183			
Indice vuoti (-)	0.495	0.545	0.594			
Defor. t100 (%)	11.65	8.79	5.98			
Cv (m/s)						
M t100 (kPa)						
k (cm/s)						
M finale (kPa)						
C _α (%)						

ı e		
75		
→		
_		

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

N° verbale di accettazione: 021/2006

Dati Generali di Campionamento

Data prelievo: 01/02/2006
Attrezzatura sondaggio ROTAZIONE
Attrezzatura prelievo: SHELBY
Modalità prelievo: PRESSIONE

Committente: REGIONE TOSCANA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prelievo [m]: 12.50 - 13.00
Prova: Data fine descrizione: 29/03/2006

N° certificato di prova:

Dati Generali del Campione

Data arrivo in laboratorio: 27/02/2006

Data estrusione campione: 01/03/2006

Condizioni contenitore: 01/03/2006

BUONE

Tipo contenitore: FUSTELLA FERRO

Forma campione CILINDRICO

Dimensioni Campione: Φ = 8.48 cm L= 63 cm

Classe del terreno: CLASSE 4

Descrizione

Il campione e' piu' lungo di quanto dichiarato.

12.37m-13.00m: Limo con argilla con tracce di sabbia f grigio verdastro (5gy 5/1) duro.

Livello planare parallelo localmente torboso bruno (10yr 3/3) (12.52m-12.61m).

		Penetr	ometro	Scisso	ometro	
Schizzo		+	//	+	//	Prove eseguite
		[MPa]	[MPa]	[MPa]	[MPa]	
12.53 12.57 12.60 12.63 12.67 12.70 12.73 12.76 12.80 12.83 12.86 12.90 12.93 12.96 13.00	13.00	0.40 0.40 0.40	0.42 0.42 0.42	[MPa]	[MPa]	Tx CK0U1 Vtl1 Edo IL1 MO1 Tx CK0U2 γ1 w1 Ft1 Tx CK0U3 RC1 LLP1 Gr1 Gs1

Richiami

 $\gamma = {\sf Peso} \; {\sf di} \; {\sf volume}$ LLP = Limiti di liquidità e plasticità

w = UmiditàFt = FotografiaGr = Analisi GranulometricaGs = Peso specifico dei grani

Edo IL = Edometro incrementi di carico Tx CK0U = Triassiale consolidata anisotropica (linea K0) rottura non drena

MO = Sostanze organiche Vtl = Misura velocità onde elastiche

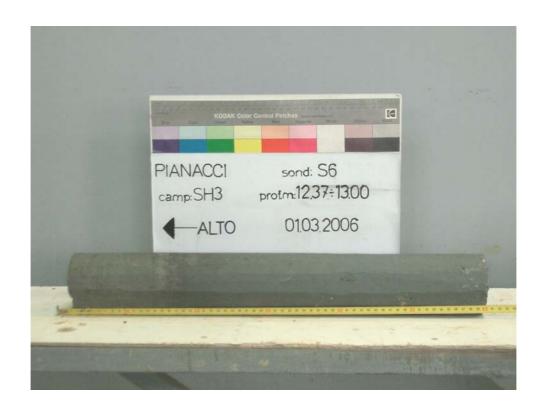
RC = Colonna risonante

CARATTERISTICHE GENERALI DEL CAMPIONE

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

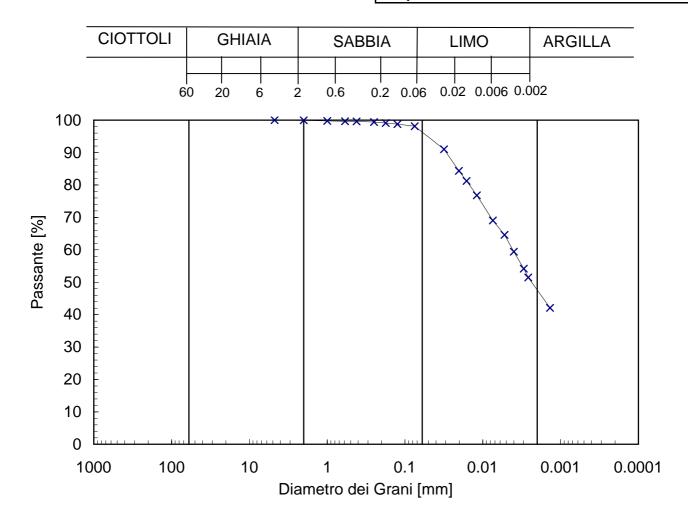
N° verbale di accettazione: 021/2006

Committente: REGIONE TOSCANA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prelievo [m]: 12.50 - 13.00
Prova: Cg
Data fine descrizione: 29/03/2006


Prove	Profondità	Risultati prove	Riferimento procedure	N° certificato di prova
γ1	12.37m - 13m	Peso di volume = 19.27 [kN/m3]	PT-LMT-00021 REV. 1	
w1	12.37m - 13m	Umidità = 31 [%]	PT-LMT-00016 REV. 0	
LLP1	12.80m - 12.90m	Limite Liquido = 65 [%] Limite Plastico = 28 [%]	PT-LMT-00020 REV. 1	
Gs1	12.80m - 12.90m	Peso specifico dei grani = 2.721 [-]	PT-LMT-00019 REV. 1	
MO1	12.55m - 12.60m	Sostanze organiche = 1.26 [%]	PT-LMT-00107 REV. P0	

Rev	data emiss.	eseguito da	elaborato da
0		Pezzota	Angeloni

Committente:COMUNE DI BIBBIENACantiere:PIANACCISondaggio:S6Campione:SH3Profondità prelievo [m]:12.37 - 13.00Data prova:01/03/06



rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

N° certificato di prova:

N° verbale di accettazione: 021/2006

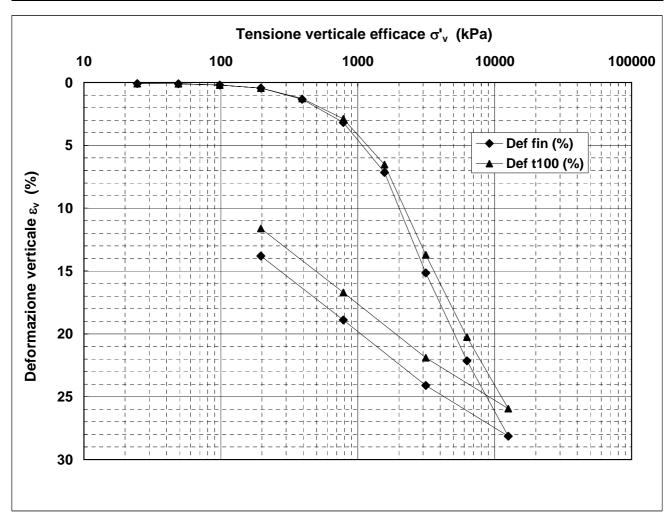
Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prelievo [m]: 12.8 - 12.9
Prova: Gr 1
Data prova: 08/03/2006

Prova	Simbolo	Profc	ondità	Peso Secco Materiale	Metodo Preparazione	< 0.075mm	СІОТТОLІ	GHIAIA	SABBIA	LIMO	ARGILLA	D ₆₀	D ₅₀	D ₁₀
	0,	da m	a m	[g]		. %) %) %	%	1%	′ %	[mm]	[mm]	[mm]
Gr 1	х	12.80	12.90		VIA UMIDA	98		0	4	49	48	4.1.E-03	2.4.E-03	1.5.E-04

NOTE:

^{*} Ricavato da estrapolazione dei dati sperimentali

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi


N° certificato di prova:

N° verbale di accettazione: 021/2006

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prova [m]: 12.55 - 12.60
Prova: Edo IL
Provino: 1
Data prova: 01/03/2006

Dati generali dei provini

ovino	fondità			Da	iti iniz	iali				Dati a	a fine	prova						
Ę	Prof	D	Η	$\gamma_{\rm u}$	W_i	γ_{s}	е	GS	Η	$\gamma_{\rm u}$	W _f	γ_{s}	е		Metodo di preparazione			
-	m	mm	mm	kN/m ³	%	kN/m ³	-	ı	mm	kN/m ³	%	kN/m ³	-					
1	12.58	50.0	19.0	18.74	31.3	14.28	0.855	2.70	16.4	20.35	22.8	16.57	0.599		fustellazione			

Legenda:

D = diametro del provino H = altezza del provino w = contenuto d'acquae = indice dei vuoti

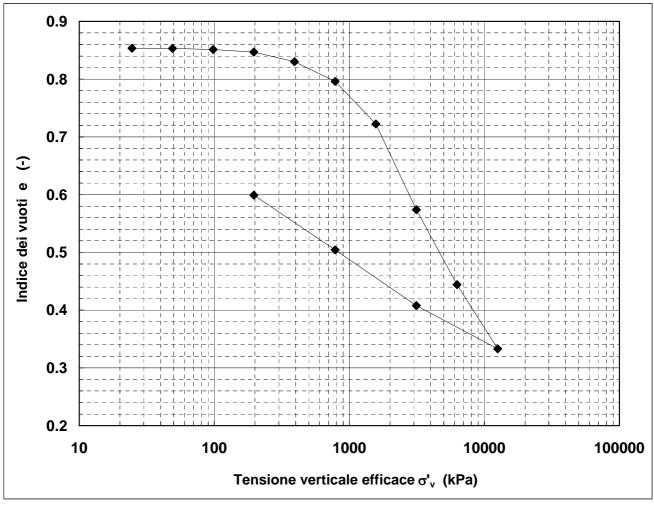
GS = Peso specifico dei grani Subscritto 'u' = umido Subscritto 'i' = iniziale Subscritto 'f' = finale

 γ = peso di volume

Subscritto 's' = secco

Note:

Il campione rigonfia sino ad un carico di 100 kPa.



rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prova [m]: 12.55 - 12.60
Prova: Edo IL
Provino: 1
Data prova: 01/03/2006

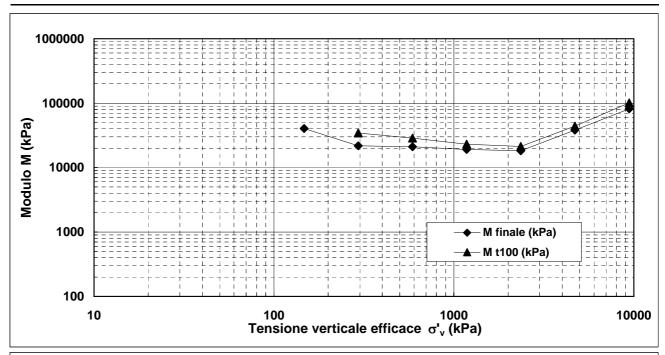
Dati generali dei provini

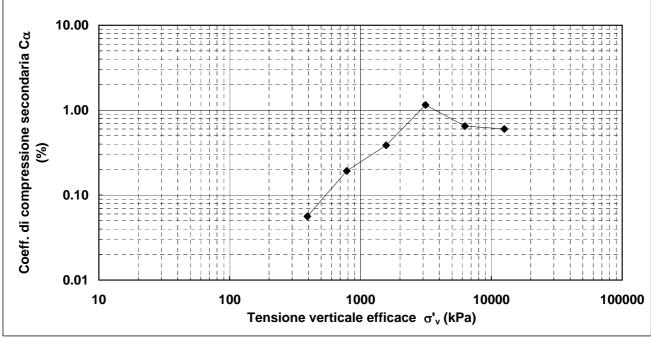
ovino	fondità		Dati iniziali Dati a fine prova												
Ę.	Prof	D	Η	$\gamma_{\rm u}$	\mathbf{W}_{i}	γ_{s}	е	GS	Η	$\gamma_{\rm u}$	W _f	γ_{s}	е		Metodo di preparazione
-	m	mm	mm	kN/m ³	%	kN/m ³	-	-	mm	kN/m ³	%	kN/m ³	-		
1	12.58	50.0	19.0	18.74	31.3	14.28	0.855	2.70	16.4	20.35	22.8	16.57	0.599		fustellazione

Legenda:

D = diametro del provino H = altezza del provino

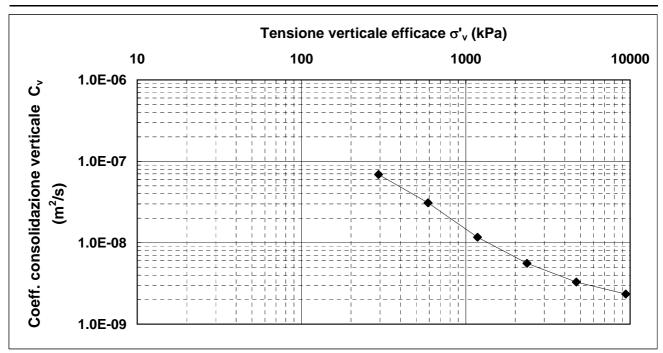
γ = peso di volume

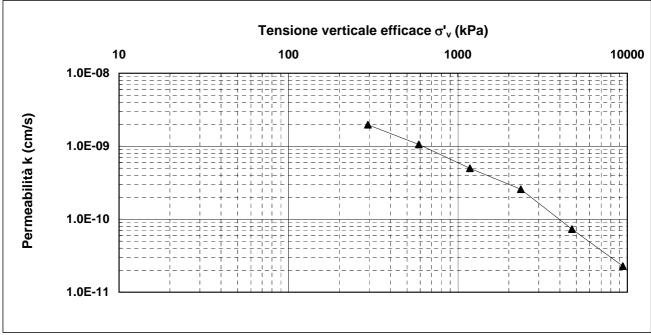

w = contenuto d'acquae = indice dei vuoti


GS = Peso specifico dei grani Subscritto 'u' = umido Subscritto 's' = secco Subscritto 'i' = iniziale Subscritto 'f' = finale

Note:

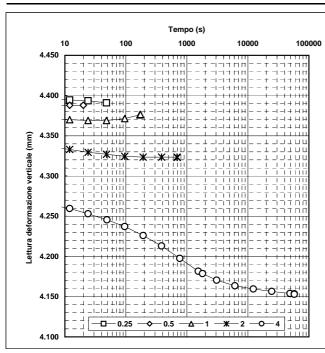
rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

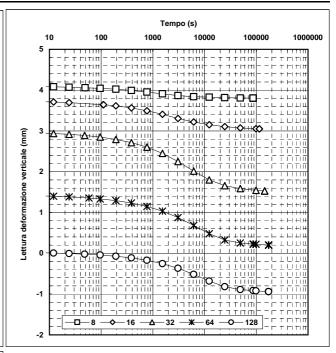


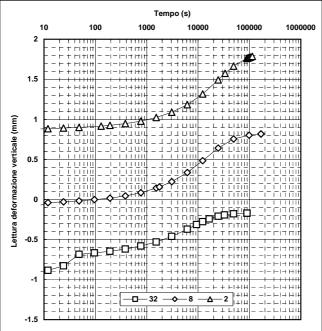


Note:	
-------	--

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi






|--|

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Note:			

PROVA DI CONSOLIDAZIONE EDOMETRICA Sesto foglio: tabella riassuntiva dati

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

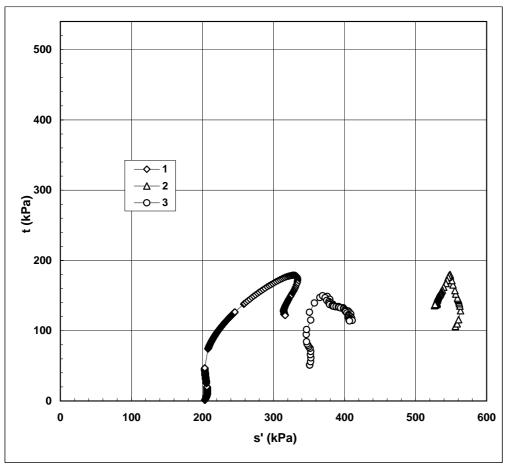
Normativa di riferimento: ASTM D2435/96

		T			I		I	I	T
Tensione di prova (kPa)	24.5	49.1	98.1	196.2	392.4	784.8	1569.6	3139.2	6278.4
Tensione media (kPa)	12.3	36.8	73.6	147.2	294.3	588.6	1177.2	2354.4	4708.8
Defor. finale (mm)	0.017	0.020	0.039	0.085	0.255	0.605	1.360	2.880	4.208
Defor. finale (%)	0.09	0.11	0.21	0.45	1.34	3.18	7.16	15.16	22.14
Altezza finale (mm)	18.983	18.980	18.961	18.915	18.745	18.396	17.641	16.120	14.793
Indice vuoti (-)	0.853	0.853	0.851	0.847	0.830	0.796	0.722	0.574	0.444
Defor. t100 (%)	0.09	0.11	0.21	0.45	1.27	2.89	6.53	13.71	20.26
Cv (m/s)					6.9E-08	3.086E-08	1.168E-08	5.579E-09	3.285E-09
M t100 (kPa)					34348	28631.911	23001.248	21292.024	43974.653
k (cm/s)					2.0E-09	1.057E-09	4.98E-10	2.571E-10	7.329E-11
M finale (kPa)				40436.4	21830.1	21045.9	19121.6	18210.1	38119.7
C _α (%)					0.06	0.19	0.39	1.15	0.65

Tensione di prova (kPa)	12556.8	3139.2	784.8	196.2			
Tensione media (kPa)	9417.6	7848.0	1962.0	490.5			
Defor. finale (mm)	5.348	4.580	3.592	2.623			
Defor. finale (%)	28.14	24.10	18.90	13.80			
Altezza finale (mm)	13.653	14.421	15.409	16.378			
Indice vuoti (-)	0.333	0.408	0.504	0.599			
Defor. t100 (%)	25.95	21.91	16.71	11.61			
Cv (m/s)	2.345E-09						
M t100 (kPa)	100780.02						
k (cm/s)	2.282E-11						
M finale (kPa)	81467.7						
C _α (%)	0.60						

Note:		

ĺ	rev.	data emiss.	sperimentatore	responsabile
	0	29/03/2006	Capoferri	Airoldi


N° certificato di prova:

N° verbale di accettazione: 021/2006

COMUNE DI BIBBIENA Committente: Cantiere: **PIANACCI** Sondaggio: **S**6 Campione: SH3 Profondità prova [m]: 12.4m - 12.8m Prova: Tx CK0U Provino: 123 02/03/2006 Data prova:

Dati generali dei provini

rovino	ofondità		Da	ıti inizi	ali				Dati	Dati a fine consolidazione							Dati a	rottur	a	Metodo di preparazione - tipo
<u> </u>	Prof	D	Н	γ	w	е	σ'_{a}	σ' _r	K	B.P.	В	ϵ_{a}	$\epsilon_{\!\scriptscriptstyle V}$	е	DFC	٧	t	s'	ε _a	di materiale
-	m	mm	mm	kN/m ³	%	-	kPa	kPa	-	kPa	-	%	%	ı	g	mm/m	kPa	kPa	%	-
1	12.45	50.0	98.6	19.48	28.7	0.77	197.7	200.7	1.02	499.7	0.96	0.2	-0.1	0.75	1	0.010	179.1	329	3.459	
2	12.65	50.0	91.2	19.04	29.4	0.80	662.2	450.0	0.68	400	0.94	1.9	2.2	0.76	1	0.010	179.9	549	1.788	fatallaniana
3	12.75	50.0	90.8	19.05	30.0	0.81	402.0	300.0	0.75	400	0.73	0.4	0.5	0.80	1	0.010	149.7	369	2.259	fustellazione - indisturbato
																				indictarbato

Legenda:

D = diametro del provino

H = altezza del provino

 γ = peso di volume umido

w = contenuto d'acqua

e = indice dei vuoti

 σ , σ' =tensioni totali ed efficaci

 $K = \sigma_r / \sigma_a$ a fine consolidazione

B.P. = back pressure

B = coefficiente di Skempton

 ε = deformazioni

 $t = (\sigma_a - \sigma_r) / 2$ $s' = (\sigma'_a + \sigma'_r) / 2$

U = pressione interstiziale

DFC = durata consolidazione

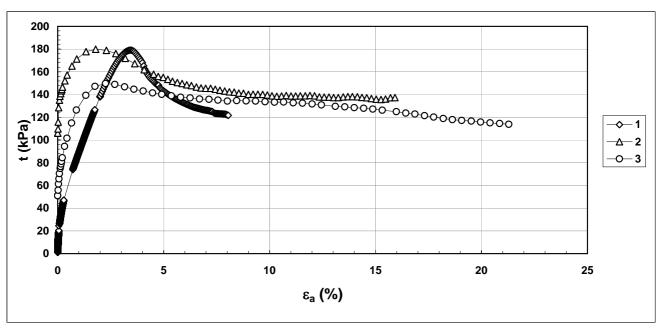
v = velocità delle pressa

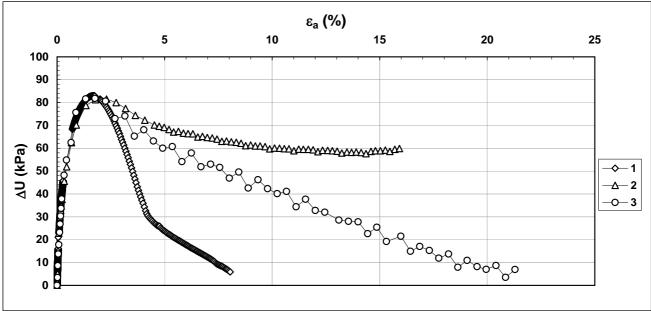
Subscritto 'a' = assiale

Subscritto 'r' = radiale

Subscritto 'v' = volumetrico

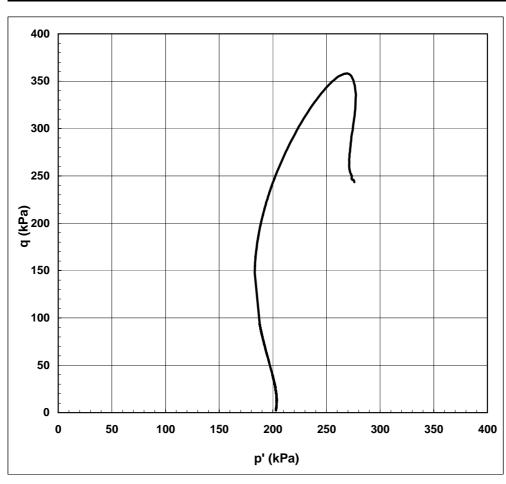
Schizzo a rottura


1	2
3	4


Note:

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Capoferri	Airoldi

COMUNE DI BIBBIENA Committente: Cantiere: **PIANACCI** Sondaggio: **S**6 Campione: SH3 Profondità prova [m]: 12.4m - 12.8m Prova: Tx CK0U Provino: 123 02/03/2006 Data prova:


rev.	data emiss.	eseguito da	elaborato da
0	29/03/2006	Saccenti	Saccenti

Numero verbale di accettazione:	021/2006
Numero certificato di prova:	

Committente:	COMUNE DI BIBBIENA
Cantiere:	PIANACCI
Sondaggio:	S6
Campione:	SH3
Profondità prova [m]:	12.40-12.50
Prova:	Tx CK0U1
Provino:	1
Data prova:	03/03/2006

Dati generali dei provini

Provino	ofondità		Da	ıti inizi	iali				Dati	a fine	cons	olidaz	ione			Т	ipo di	rottur	a	Metodo di preparazione - tipo	
<u> </u>	Prof	D	Ι	γ	w	е	σ'_{a}	σ' _r	K	B.P.	В	ϵ_{a}	ϵ_{r}	е	DFC					di materiale	
-	m	mm	mm	kN/m3	%	•	kPa	kPa	-	kPa	-	%	%	-	g					-	
1	12.45	5.00	9.86	19.48	28.7	0.775	197.7	200.7	1.02	500	0.96	0.17	-0.07	0.747	1						
																Compressione per carico			per	Fustellazione orizzontale -	
																			Campione		
																				indisturbato	

Legenda:

D = diametro del provino

H = altezza del provino

 γ = peso di volume umido

w = contenuto d'acqua

e = indice dei vuoti

 $\sigma,\,\sigma'$ =tensioni totali ed efficaci

 $K_0 = \sigma_r / \sigma_a$ a fine consolidazione

B.P. = back pressure

B = coefficiente di Skempton

 $\epsilon = \text{deformazioni}$

 $\varepsilon_p = (\varepsilon_a + 2 \cdot \varepsilon_r)$

 $\varepsilon_{\rm q}$ = 2/3 ($\varepsilon_{\rm a}$ - $\varepsilon_{\rm r}$)

 $q = (\sigma_a - \sigma_r)$

 $p' = (\sigma'_a + 2 \cdot \sigma'_r) / 3$

E=modulo di Young

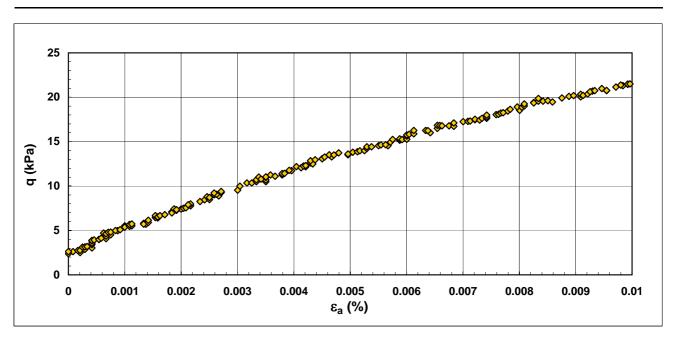
 $\nu \text{=} \text{coefficiente di Poisson}$

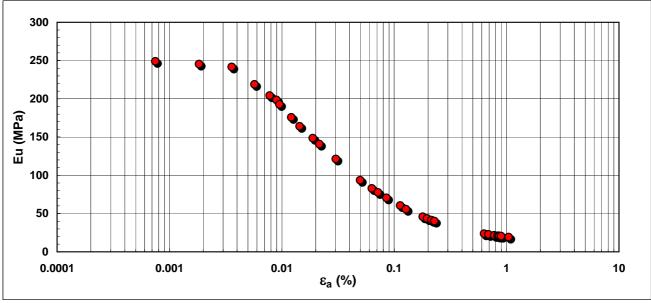
v = velocità delle pressa

Subscritto 'a' = assiale

Subscritto 'r' = radiale

Subscritto 'v' = volumetrico


3:	
T 2	
0	
7	
_	
1	

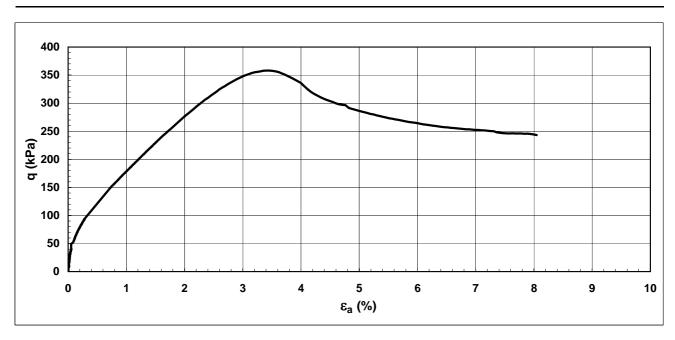


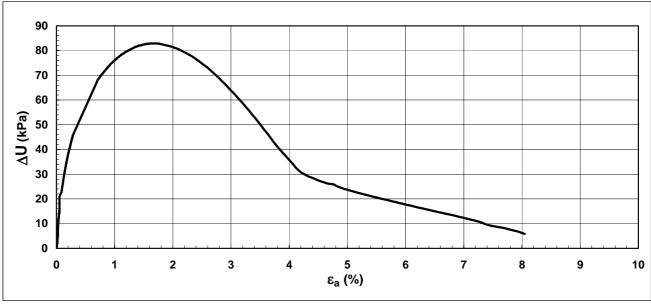
rev.	data emiss.	eseguito da	elaborato da
0	29/03/2006	Saccenti	Saccenti

Numero verbale di accettazione:	021/2006
Numero certificato di prova:	

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prova l.m.m. [m]: 12.40-12.50
Prova: Tx CK0U1
Provino: 1
Data prova: 03/03/2006

I valori di modulo sono stati calcolati interpolando gruppi di dati ritenuti significativi.


Quarto foglio: diagrammi q - ε_a e ΔU - ε_a


rev.	data emiss.	eseguito da	elaborato da
0	29/03/2006	Saccenti	Saccenti

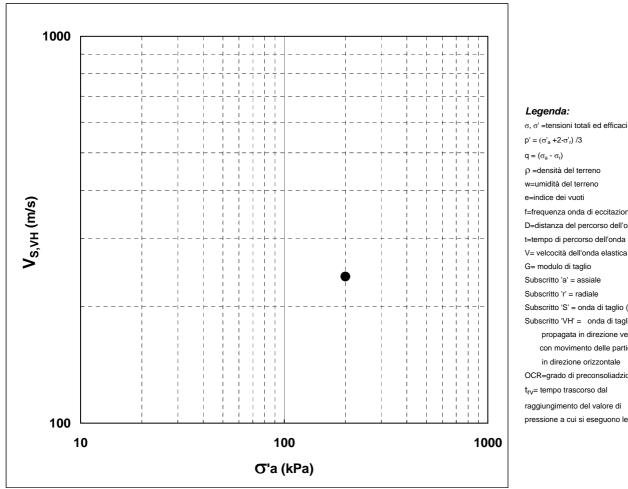
Normativa di riferimento: ASTM D4767/95

Numero verbale di accettazione:	021/2006
Numero certificato di prova:	

Committente:	COMUNE DI BIBBIENA
Cantiere:	PIANACCI
Sondaggio:	S6
Campione:	SH3
Profondità prova [m]:	12.40-12.50
Prova:	Tx CK0U1
Provino:	1
Data prova:	03/03/2006

Note:	

MISURA DELLA VELOCITA' ONDE DI TAGLIO IN PROVINI TRIASSIALI


	rev.	data emiss.	eseguito da	elaborato da
ſ	0	29/03/2006	Saccenti	Saccenti

Procedura di riferimento: PT-LMT-159/01

Committente: **COMUNE DI BIBBIENA** Cantiere: **PIANACCI** Sondaggio: Campione: SH3 Profondità prova l.m.m. [m]: 12.40-12.50 Prova: VTL Provino: Data prova: 03/03/06

TIPO DI ONDA: SVH (onda di taglio propagata in direzione verticale)

												Dati relativi alla misura				
misura	σ' _a	σ'_{r}	t _{rv}	p'	q	OCR	ρ	W	е	f	D	t	$V_{S,VH}$	G_VH		
	kPa	kPa	min	kPa	kPa		g/cm ³	%	-	kHz	mm	μS	m/s	MPa		
1	200.0	200.0	-	200.0	0.0	-	1.973	-	0.747	10.0	95.728	400.0	239.3	113.0		

Legenda:

 $p' = (\sigma'_a + 2 \cdot \sigma'_r) / 3$ $q = (\sigma_a - \sigma_r)$ ρ =densità del terreno w=umidità del terreno e=indice dei vuoti f=frequenza onda di eccitazione D=distanza del percorso dell'onda t=tempo di percorso dell'onda V= velcocità dell'onda elastica G= modulo di taglio Subscritto 'a' = assiale Subscritto 'r' = radiale Subscritto 'S' = onda di taglio (Shear) Subscritto 'VH' = onda di taglio propagata in direzione verticale e con movimento delle particelle in in direzione orizzontale OCR=grado di preconsoliadzione t_{rv}= tempo trascorso dal raggiungimento del valore di pressione a cui si eseguono le misure

Note:

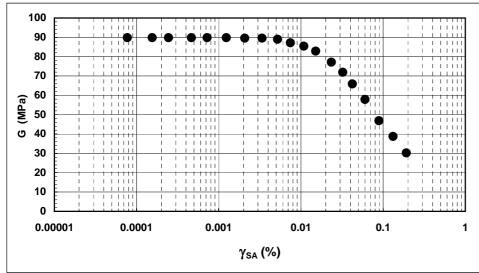
Misure dei tempi delle velocità delle onde di taglio eseguite sul provino S6_SH3_CK0U1

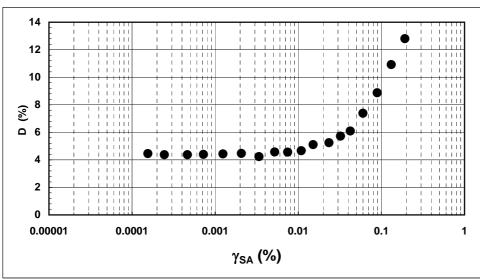
03/03/2006

rev.	data emiss.	sperimentatore	responsabile
0	19/12/2005	Angeloni	Airoldi

Normativa di riferimento: ASTM D4015/95

N° certificato di prova:


N° verbale di accettazione: 021/2006


Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6
Campione: SH3
Profondità prova [m]: 12.80 - 12.90
Prova: RC
Provino: 1

Dati generali dei provini

Informazioni generali					<i>r</i> a	Dati iniziali										
INDISTURBATO	tipo di provino	е	W	γ_{w}	Н	D	В	B.P.	K	σ' _r	σ'a	е	W	γw	Н	Ф
FUSTELLAZIONE	metodo di preparazione	-	%	kN/m3	mm	mm	-	kPa	-	kPa	kPa	-	%	kN/m3	mm	mm
PIETRA POROSA	superfice di appoggio	0.747	28.4	19.46	97.2	50.0	0.40	300.0	1.0	200.0	200.0	0.747	27.7	19.36	97.20	50.00
TORSIONALE	eccitazione															

Data prova:

Legenda:

 Φ = diametro del provino

H = altezza del provino

 γ_w = peso di volume umido

w = contenuto d'acqua

e = indice dei vuoti

 σ' =tensioni efficaci

 $K = \sigma_r / \sigma_a$

B.P. = back pressure

B = coefficiente di Skempton

G = Modulo di taglio

 γ_{SA} = def.di taglio in singola ampiezza

D = Rapporto di smorzamento di taglio

Subscritto 'a' = assiale

Subscritto 'r' = radiale

Note:

rev.	data emiss.	sperimentatore	responsabile
0	19/12/2005	Angeloni	Airoldi

N° certificato di prova:

N° verbale di accettazione: 021/2006

Committente: COMUNE DI BIBBIENA
Cantiere: PIANACCI
Sondaggio: S6

Campione: SH3
Profondità prova [m]: 12.80 - 12.90

Prova: RC Provino: 1

Data prova: 03/03/2006

Dati generali dei provini

Informazioni generali					а		Dati iniziali									
INDISTURBATO	tipo di provino	е	W	$\gamma_{\rm w}$	Н	D	В	B.P.	K	σ' _r	σ'a	е	w	γ_{w}	Н	Φ
FUSTELLAZIONE	metodo di preparazione	-	%	kN/m3	mm	mm	-	kPa	-	kPa	kPa	-	%	kN/m3	mm	mm
PIETRA POROSA	superfice di appoggio	0.747	28.4	19.46	97.2	50.0	0.40	300.0	1.0	200.0	200.0	0.747	27.7	19.36	97.20	50.00
TORSIONALE	eccitazione															

Valori numerici

G	G/G _{MAX}	γ	D
(MPa)	(-)	(%)	(%)
89.81	1	0.0001	
89.81	1	0.0002	4.459
89.81	1	0.0002	4.370
89.81	1	0.0005	4.367
89.81	1	0.0007	4.400
89.81	1	0.0012	4.436
89.55	0.99708	0.0021	4.469
89.55	0.99708	0.0034	4.232
89.03	0.99125	0.0052	4.565
87.21	0.97097	0.0075	4.563
85.40	0.95091	0.0109	4.661
82.86	0.92261	0.0151	5.110
77.16	0.85914	0.0235	5.240
71.90	0.80055	0.0323	5.715
65.92	0.73398	0.0422	6.089
57.86	0.64422	0.0602	7.385
46.85	0.5216	0.0892	8.873
38.70	0.4309	0.1319	10.918
30.26	0.33688	0.1917	12.797

Legenda:

 Φ = diametro del provino

H = altezza del provino

 γ_w = peso di volume umido

w = contenuto d'acqua

e = indice dei vuoti

 σ' =tensioni efficaci

 $K = \sigma_r / \sigma_a$

B.P. = back pressure

B = coefficiente di Skempton

G = Modulo di taglio

 γ_{SA} = def.di taglio in singola ampiezza

D = Rapporto di smorzamento di taglio

Subscritto 'a' = assiale

Subscritto 'r' = radiale

ai l			
=			
Ò			
~			
ļ.	I.		

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

N° verbale di accettazione: 020/2006

Dati Generali di Campionamento

Data prelievo: 11/01/2006
Attrezzatura sondaggio ROTAZIONE
Attrezzatura prelievo: SHELBY
Modalità prelievo: PRESSIONE

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prelievo [m]: 3.45 - 3.95
Prova: Documents Documents Decuments Decumen

N° certificato di prova:

Dati Generali del Campione

Data arrivo in laboratorio: 27/02/2006
Data estrusione campione: 06/03/2006

Data estrusione campione: 06/03/2006 Condizioni contenitore: BUONE Tipo contenitore: FUSTELLA ACCIAIO

Forma campione CILINDRICO

Dimensioni Campione: Φ = 8.48 cm L= 28 cm

Classe del terreno: CLASSE 4

Descrizione

3.66m-3.94m: Ghiaia m allungata subangolare subarrotondata Imax 38mm con sabbia m/f limosa argillosa bruno giallastro (10yr 5/4).

	Penetr	ometro	Scisso	ometro	
Schizzo	+	//	+	//	Prove eseguite
	[MPa]	[MPa]	[MPa]	[MPa]	-
3.55 3.58 3.62 3.65 3.68 3.72 3.75 3.78 3.81 3.85 3.88 3.91 3.95 3.98 4.01 4.05 4.08 4.11 4.14 4.18 4.21 4.24 4.28 4.31					RS CK0D1 γ1 w1 LLP1 Gr1 Gs1 Ft1 RS CK0D2 RS CK0D3 Edo IL1

Richiami

RS CK0D = Provini ricostruiti

Edo IL = Edometro incrementi di carico

RS CK0D = Taglio anulare

 γ = Peso di volume

w = Umidità

LLP = Limiti di liquidità e plasticità

Gr = Analisi Granulometrica

Gs = Peso specifico dei grani

Ft = Fotografia

CARATTERISTICHE GENERALI DEL CAMPIONE

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

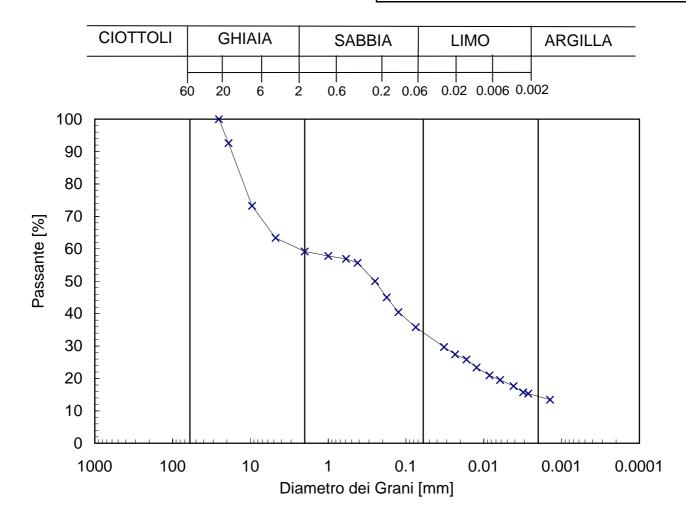
N° verbale di accettazione: 020/02006

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prelievo [m]: 3.45 - 3.95
Prova: Cg
Data fine descrizione: 29/03/2006

Prove	Profondità	Risultati prove	Riferimento procedure	N° certificato di prova
γ1	3.66m - 3.94m	Peso di volume = 19.71 [kN/m3]	PT-LMT-00021 REV. 1	
w1	3.66m - 3.94m	Umidità = 24 [%]	PT-LMT-00016 REV. 0	
LLP1	3.66m - 3.94m	Limite Liquido = 43 [%] Limite Plastico = 23 [%]	PT-LMT-00020 REV. 1	
Gs1	3.66m - 3.94m	Peso specifico dei grani = 2.719 [-]	PT-LMT-00019 REV. 1	

Rev	data emiss.	eseguito da	elaborato da
0		Pezzota	Angeloni

Committente:	COMUNE DI BIBBIENA
Cantiere:	SOCI
Sondaggio:	S7
Campione:	SH1
Profondità prelievo [m]:	3.66 - 3.95
Data prova:	02/03/06



rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

N° certificato di prova:

N° verbale di accettazione: 020/2006

Committente: REGIONE TOSCANA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prelievo [m]: 3.81 - 3.85
Prova: Gr 1
Data prova: 08/03/2006

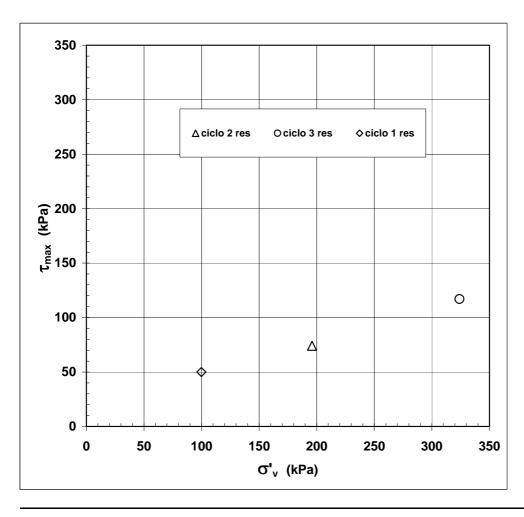
Prova	Simbolo	Profc	ondità	Peso Secco Materiale	Metodo Preparazione	< 0.075mm	СІОТТОLІ	GHIAIA	SABBIA	LIMO	ARGILLA	D ₆₀	D ₅₀	D ₁₀
	0,	da m	a m	[g]		. %) %) %	%	l %	′ %	[mm]	[mm]	[mm]
Gr 1	х	3.81	3.85		VIA UMIDA	36	-	41	25	20	14	2.4.E+00	2.5.E-01	4.4.E-04

NOTE:

PROVA DI TAGLIO TORSIONALE - Determinazione resistenza massima e residua: diagramma τ/σ

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

Normativa di riferimento: Draft ASTM 08/02/99


N° certificato di prova:

N° verbale di accettazione: 020/2006

Committente:	COMUNE DI BIBBIENA
Cantiere:	SOCI
Sondaggio:	S7
Campione:	SH1
Profondità prova [m]:	3.66 - 3.94
Prova:	Rs CK0D
Provino:	123
Data prova:	20.03.06

Dati generali dei provini

Duti	gener	u., u.	, p. c	* *****																
Provino		Dati iniziali					Dati a fine consolidazione				Valori di picco			Valori residui			Rottura		Metodo di preparazione - tipo	
P	Prof	Α	Н	γ	w	γ _d	σ'ν	Н	εν	γd	dfc	τ_{max}	δ_{h}	ϵ_{v}	τ	δ_{h}		٧	dfr	di materiale
-	m	cm ²	mm	kN/m ³	%	kN/m ³	kPa	mm	%	kN/m ³	h	kPa	mm	%	kPa	mm		mm/m	ore	-
1	3.79	30.6	22.0	19.71	23.8	15.93	100	21.8	0.86	16.07	8	-	-	-	50	232		0.100	39	
2	3.80	30.6	22.0	19.71	23.8	15.93	196	21.1	4.21	16.63	8	-	-	-	74	143		0.100	48	
3	3.79	30.6	22.0	19.71	23.8	15.93	324	20.6	6.31	17.00	8	-	-	-	117	272		0.100	47	provino ricostruito non pretagliato
																				non protagnato

Legenda:

A = area del provino

H = altezza del provino

 γ = peso di volume umido

w = contenuto d'acqua

 γ_d = peso di volume secco

 σ' = tensione efficace

 ϵ = deformazioni

 τ = sforzo di taglio

 $\delta = \text{spostamento}$

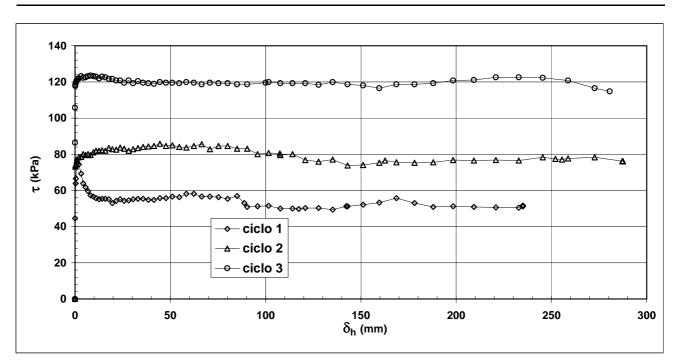
v = velocità di rottura

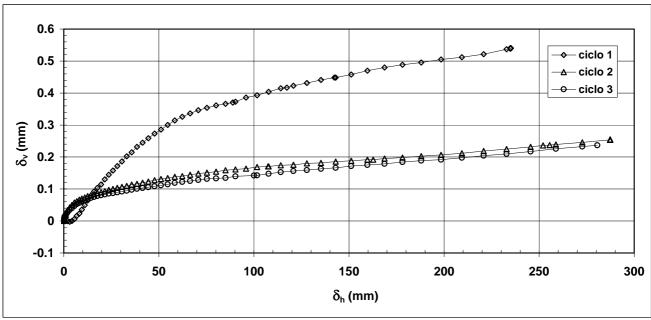
dfc = durata consolidazione

dfr = darata fase di rottura

Subscritto 'h' = orizzontale Subscritto 'v' = verticale

Subscritto 'MAX' = MASSIMO


Note:



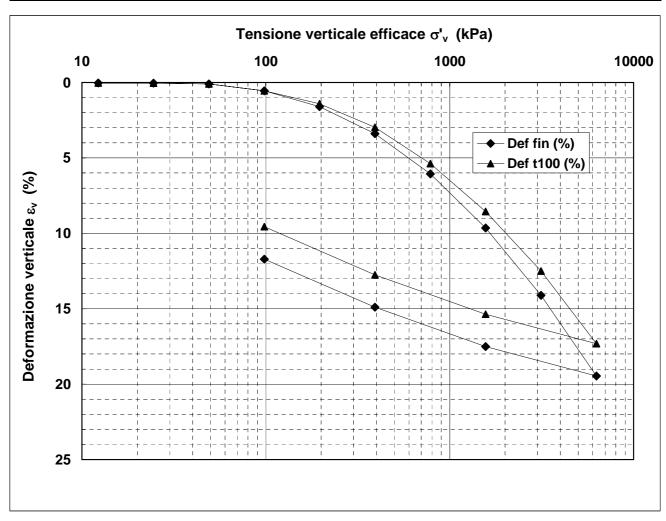
rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

Normativa di riferimento: Draft ASTM 08/02/99

COMUNE DI BIBBIENA Committente: Cantiere: SOCI Sondaggio: **S7** Campione: SH₁ Profondità prova [m]: 3.66 - 3.94 Prova: Rs CK0D Provino: 123 Data prova: 20.03.06

- ::	
# # # # # # # # # # # # # # # # # # #	
0	
Ž	
_	

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi


N° certificato di prova:

N° verbale di accettazione: 020/2006

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prova [m]: 3.81 - 3.85
Prova: Edo IL
Provino: 1
Data prova: 02/03/2006

Dati generali dei provini

ovino	fondità			Da	ıti iniz	iali				Dati a	fine	prova			Mata da di managaniana
, F	Prof	D	Η	$\gamma_{\rm u}$	Wi	γ_{s}	е	GS	Н	$\gamma_{\rm u}$	W_{f}	γ_{s}	е		Metodo di preparazione
-	m	mm	mm	kN/m ³	%	kN/m ³	ı		mm	kN/m ³	%	kN/m ³	-		
1	3.83	50.0	19.0	18.51	23.8	14.96	0.771	2.70	16.8	20.53	21.1	16.95	0.563		fustellazione

Legenda:

D = diametro del provino H = altezza del provino w = contenuto d'acquae = indice dei vuoti

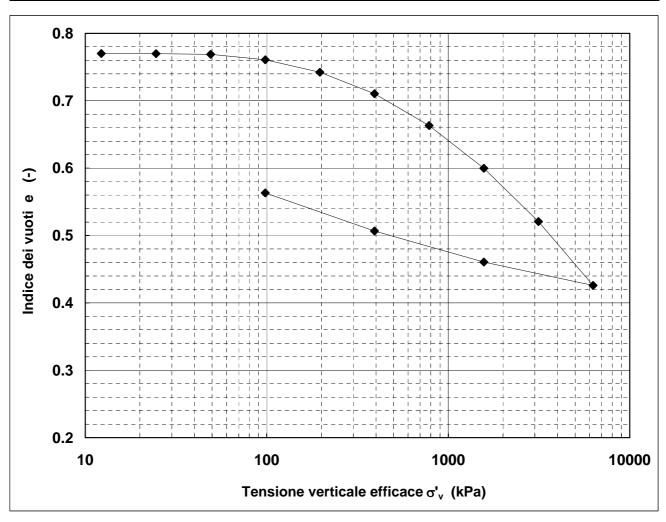
GS = Peso specifico dei grani Subscritto 'u' = umido Subscritto 'i' = iniziale Subscritto 'f' = finale

 γ = peso di volume

Subscritto 's' = secco

Note:

Il campione rigonfia sino ad un carico di 50 kPa



rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prova [m]: 3.81 - 3.85
Prova: Edo IL
Provino: 1
Data prova: 02/03/2006

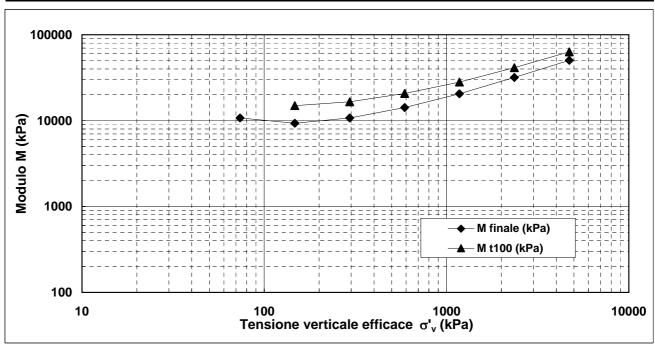
Dati generali dei provini

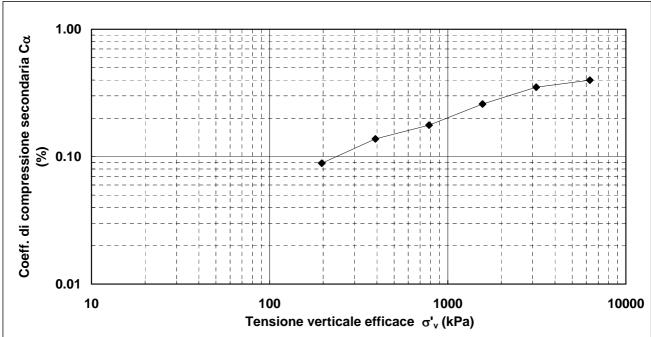
ovino	fondità			Da	ti iniz	iali				Dati a	a fine	prova			Metodo di preparazione		
Ę	Pro	D	Н	γ_{u}	W_{i}	γ_{s}	е	GS	Н	γ_{u}	W _f	γ_{s}	е		Metodo di preparazione		
-	m	mm	mm	kN/m ³	%	kN/m ³	-	-	mm	kN/m ³	%	kN/m ³	-				
1	3.83	50.0	19.0	18.51	23.8	14.96	0.771	2.70	16.8	20.53	21.1	16.95	0.563		fustellazione		

Legenda:

D = diametro del provino H = altezza del provino

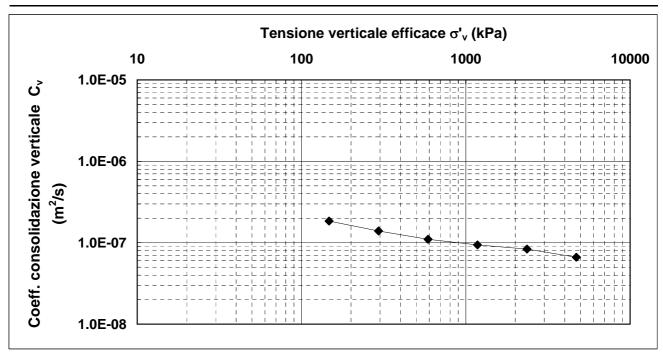
 γ = peso di volume

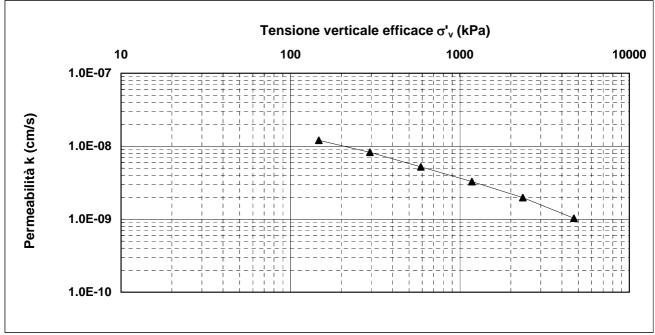

w = contenuto d'acquae = indice dei vuoti


GS = Peso specifico dei grani Subscritto 'u' = umido Subscritto 's' = secco Subscritto 'i' = iniziale Subscritto 'f' = finale

Note:

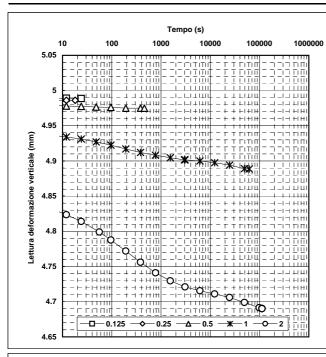
rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

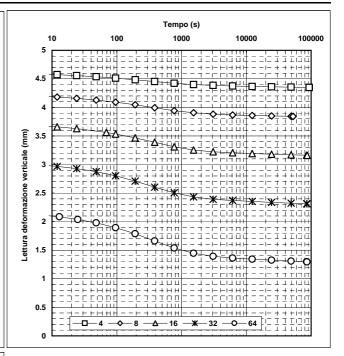


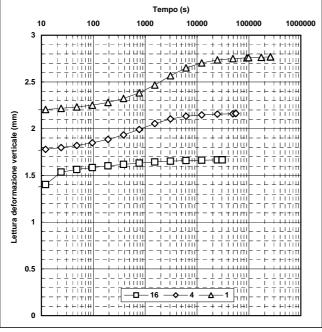


Note:	
-------	--

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi






rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Normativa di riferimento: ASTM D2435/96

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prova [m]: 3.81 - 3.85
Prova: Edo IL
Provino: 1
Data prova: 02/03/2006

.. et a constant of the consta

PROVA DI CONSOLIDAZIONE EDOMETRICA Sesto foglio: tabella riassuntiva dati

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Angeloni	Airoldi

Normativa di riferimento: ASTM D2435/96

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH1
Profondità prova [m]: 3.81 - 3.85
Prova: Edo IL
Provino: 1
Data prova: 02/03/2006

Tensione di prova (kPa)	12.3	24.5	49.1	98.1	196.2	392.4	784.8	1569.6	3139.2
Tensione media (kPa)	6.1	18.4	36.8	73.6	147.2	294.3	588.6	1177.2	2354.4
Defor. finale (mm)	0.005	0.008	0.019	0.106	0.304	0.645	1.152	1.834	2.681
Defor. finale (%)	0.03	0.04	0.10	0.56	1.60	3.39	6.06	9.65	14.11
Altezza finale (mm)	18.995	18.992	18.981	18.895	18.696	18.355	17.849	17.167	16.319
Indice vuoti (-)	0.770	0.770	0.769	0.761	0.742	0.710	0.663	0.600	0.521
Defor. t100 (%)	0.03	0.04	0.10	0.56	1.41	2.97	5.38	8.56	12.50
Cv (m/s)					1.8E-07	1.393E-07	1.102E-07	9.391E-08	8.338E-08
M t100 (kPa)					14966	16550.55	20712.98	28050.243	41384.397
k (cm/s)					1.2E-08	8.254E-09	5.22E-09	3.284E-09	1.977E-09
M finale (kPa)				10763.2	9337.8	10757.1	14220.1	20538.9	31793.0
C _{\alpha} (%)					0.09	0.14	0.18	0.26	0.35

1							
Tensione di prova (kPa)	6278.4	1569.6	392.4	98.1			
Tensione media (kPa)	4708.8	3924.0	981.0	245.3			
Defor. finale (mm)	3.699	3.327	2.831	2.225			
Defor. finale (%)	19.47	17.51	14.90	11.71			
Altezza finale (mm)	15.302	15.673	16.169	16.775			
Indice vuoti (-)	0.426	0.461	0.507	0.563			
Defor. t100 (%)	17.32	15.37	12.76	9.57			
Cv (m/s)	6.629E-08						
M t100 (kPa)	63217.282						
k (cm/s)	1.029E-09						
M finale (kPa)	50347.5						
C _α (%)	0.40						

Note:

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

N° verbale di accettazione: 020/2006

Dati Generali di Campionamento

Data prelievo: #######

Attrezzatura sondaggio ROTAZIONE

Attrezzatura prelievo: SHELBY

Modalità prelievo: PRESSIONE

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH2
Profondità prelievo [m]: 3.95 - 4.45
Prova: Dota fine descrizione: 29/03/2006

N° certificato di prova:

Dati Generali del Campione

Data arrivo in laboratorio: 27/02/2006

Data estrusione campione: 06/03/2006

Condizioni contenitore: FUSTELLA TAGLIATA

Tipo contenitore: FUSTELLA ACCIAIO

Forma campione CILINDRICO

Dimensioni Campione: Φ = 8.48 cm L= 40 cm

Classe del terreno: CLASSE 2

Descrizione

Il campione presenta una frattura normale all' asse della fustella a 4.25m.

4.04m-4.44m: Ghiaia m/g allungata subangolare subarrotondata con sabbia eterogenea limosa debolmente argillosa con rari ciottoli allungati subarrotondati lmax 78mm bruno scuro (10yr 3/3).

	Penetr	ometro	Scisso	ometro	
Schizzo	+	//	+	//	Prove eseguite
	[MPa]	[MPa]	[MPa]	[MPa]	
3.95 3.98					
4.02 4.04					
4.05 4.08					
4.12					
4.15					
4.18 4.21					RC1 γ1 w1 LLP1 Gr1 Gs1 Ft1
4.25					ROT YTWILLFIGH GSTFU
4.28					
4.31 4.35					
4.38					
4.41					
4.45 4.48					
4.51					
4.54					
4.58 4.61					
4.64					
4.68					
4.71					

Richiami

RC = Provino ricostruito

RC = Colonna risonante

 γ = Peso di volume

w = Umidità

LLP = Limiti di liquidità e plasticità

Gr = Analisi Granulometrica

Gs = Peso specifico dei grani

Ft = Fotografia

CARATTERISTICHE GENERALI DEL CAMPIONE

rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

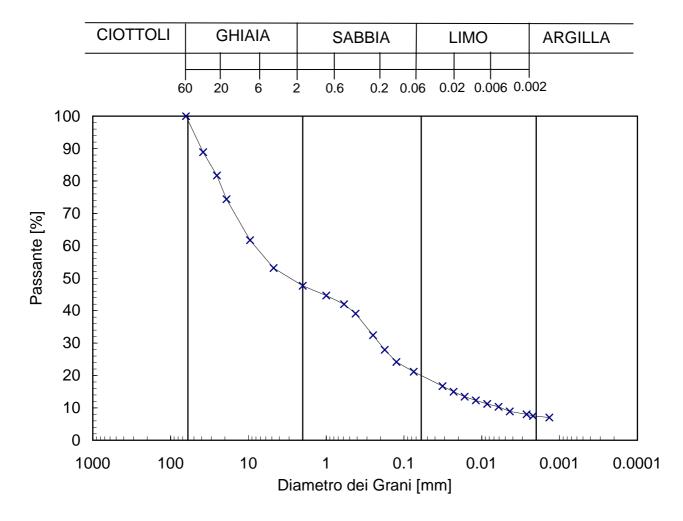
N° verbale di accettazione: 020/02006

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH2
Profondità prelievo [m]: 3.95 - 4.45
Prova: Cg
Data fine descrizione: 29/03/2006

Prove	Profondità	Risultati prove	Riferimento procedure	N° certificato di prova
γ1	4.04m - 4.44m	Peso di volume = 20.47 [kN/m3]	PT-LMT-00021 REV. 1	
w1	4.04m - 4.44m	Umidità = 22 [%]	PT-LMT-00016 REV. 0	
LLP1	4.04m - 4.44m	Limite Liquido = 41 [%] Limite Plastico = 22 [%]	PT-LMT-00020 REV. 1	
Gs1	4.04m - 4.44m	Peso specifico dei grani = 2.719 [-]	PT-LMT-00019 REV. 1	

Rev	data emiss.	eseguito da	elaborato da
0		Pezzota	Angeloni

Committente:	COMUNE DI BIBBIENA
Cantiere:	SOCI
Sondaggio:	S7
Campione:	SH2
Profondità prelievo [m]:	4.04 - 4.44
Data prova:	06/03/06


rev.	data emiss.	sperimentatore	responsabile
0	29/03/2006	Pezzotta	Airoldi

Normativa di riferimento: ASTM D422/90

N° certificato di prova:

N° verbale di accettazione: 020/2006

Committente: REGIONE TOSCANA
Cantiere: SOCI
Sondaggio: S7
Campione: SH2
Profondità prelievo [m]: 4.04 - 4.44
Prova: Gr 1
Data prova: 09/03/2006

Prova	Simbolo	Profo	ondità	Peso Secco Materiale	Metodo Preparazione	< 0.075mm	СІОТТОLІ	GHIAIA	SABBIA	LIMO	ARGILLA	D ₆₀	D ₅₀	D ₁₀
	0,	da m	a m	[g]		%	%	%	%	%	′ %	[mm]	[mm]	[mm]
Gr 1	х	4.04	4.44	2987.19	VIA UMIDA	21	1	51	28	13	7	8.3.E+00	2.9.E+00	5.6.E-03

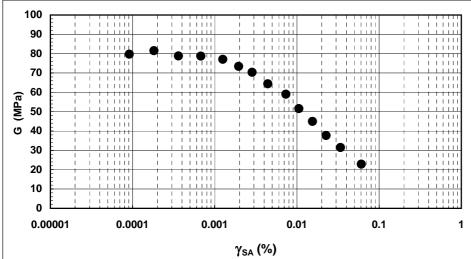
NOTE:

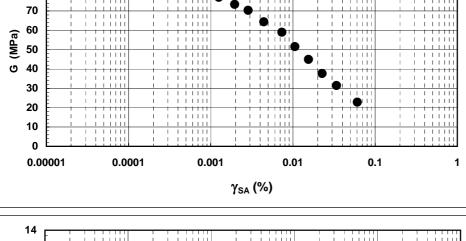
L max = 78 mm

16/03/2006

rev.	data emiss.	sperimentatore	responsabile
0	19/12/2005	Angeloni	Airoldi

Normativa di riferimento: ASTM D4015/95


N° certificato di prova:


N° verbale di accettazione: 020/2006 Committente: **COMUNE DI BIBBIENA** Cantiere: SOC Sondaggio: **S**7 Campione: SH₂ Profondità prova [m]: 4.04 - 4.44 Prova: Provino:

Dati generali dei provini

i generali	Informazioni				<i>r</i> a	li prov	Dati c						ali	ati inizi	Da	
Ricostruito	tipo di provino	е	w	γ_{w}	Н	D	В	B.P.	K	σ' _r	σ'a	е	W	γ_{w}	Н	Ф
Compattazione	metodo di preparazione	-	%	kN/m3	mm	mm	-	kPa	-	kPa	kPa	-	%	kN/m3	mm	mm
umida 4 strati		0.589	19.5	19.92	97.4	49.9	0.50	200.0	1.0	55.0	55.0	0.599	16.3	19.27	97.60	50.00
PIETRA POROSA	superfice di appoggio															
TORSIONALE	eccitazione															

Data prova:

Legenda:

 Φ = diametro del provino

H = altezza del provino

 γ_w = peso di volume umido

w = contenuto d'acqua

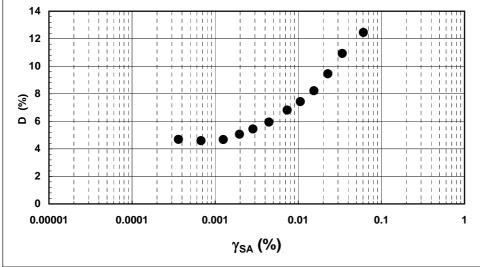
e = indice dei vuoti

σ' =tensioni efficaci

 $K = \sigma_r / \sigma_a$

B.P. = back pressure

B = coefficiente di Skempton


G = Modulo di taglio

 γ_{SA} = def.di taglio in singola ampiezza

D = Rapporto di smorzamento di taglio

Subscritto 'a' = assiale

Subscritto 'r' = radiale

O O	
–	
_	
1	- 1

16/03/2006

rev.	data emiss.	sperimentatore	responsabile
0	19/12/2005	Angeloni	Airoldi

Normativa di riferimento: ASTM D4015/95

N° certificato di prova:

N° verbale di accettazione: 020/2006

Committente: COMUNE DI BIBBIENA
Cantiere: SOCI
Sondaggio: S7
Campione: SH2
Profondità prova [m]: 4.04 - 4.44
Prova: RC
Provino: 1

Dati generali dei provini

Informazioni generali			Dati di prova									Dati iniziali				
Ricostruito	tipo di provino	е	W	γ_{w}	Н	D	В	B.P.	K	σ' _r	σ' _a	е	W	γ_{w}	Н	Φ
Compattazione	metodo di preparazione	-	%	kN/m3	mm	mm	-	kPa	-	kPa	kPa	-	%	kN/m3	mm	mm
umida 4 strati		0.589	19.5	19.92	97.4	49.9	0.50	200.0	1.0	55.0	55.0	0.599	16.3	19.27	97.60	50.00
PIETRA POROSA	superfice di appoggio															
TORSIONALE	eccitazione															

Data prova:

Valori numerici

G	G/G _{MAX}	γ	D
(MPa)	(-)	(%)	(%)
79.75	1	0.0001	-
81.52	1.02219	0.0002	-
78.85	0.98867	0.0004	4.686
78.74	0.98739	0.0007	4.598
77.07	0.96642	0.0013	4.670
73.39	0.92021	0.0020	5.057
70.39	0.88267	0.0029	5.439
64.38	0.80733	0.0044	5.936
59.00	0.73978	0.0074	6.811
51.61	0.6472	0.0106	7.427
44.96	0.5637	0.0154	8.224
37.67	0.4724	0.0227	9.456
31.48	0.39479	0.0339	10.926
22.86	0.28667	0.0608	12.451

Legenda:

 Φ = diametro del provino

H = altezza del provino

 γ_w = peso di volume umido

w = contenuto d'acqua

e = indice dei vuoti

 σ' =tensioni efficaci

 $K = \sigma_r / \sigma_a$

B.P. = back pressure

B = coefficiente di Skempton

G = Modulo di taglio

 γ_{SA} = def.di taglio in singola ampiezza

D = Rapporto di smorzamento di taglio

Subscritto 'a' = assiale

Subscritto 'r' = radiale

	٠
٠,	٠
•	-
-	
٠,	-
_	-
-	•

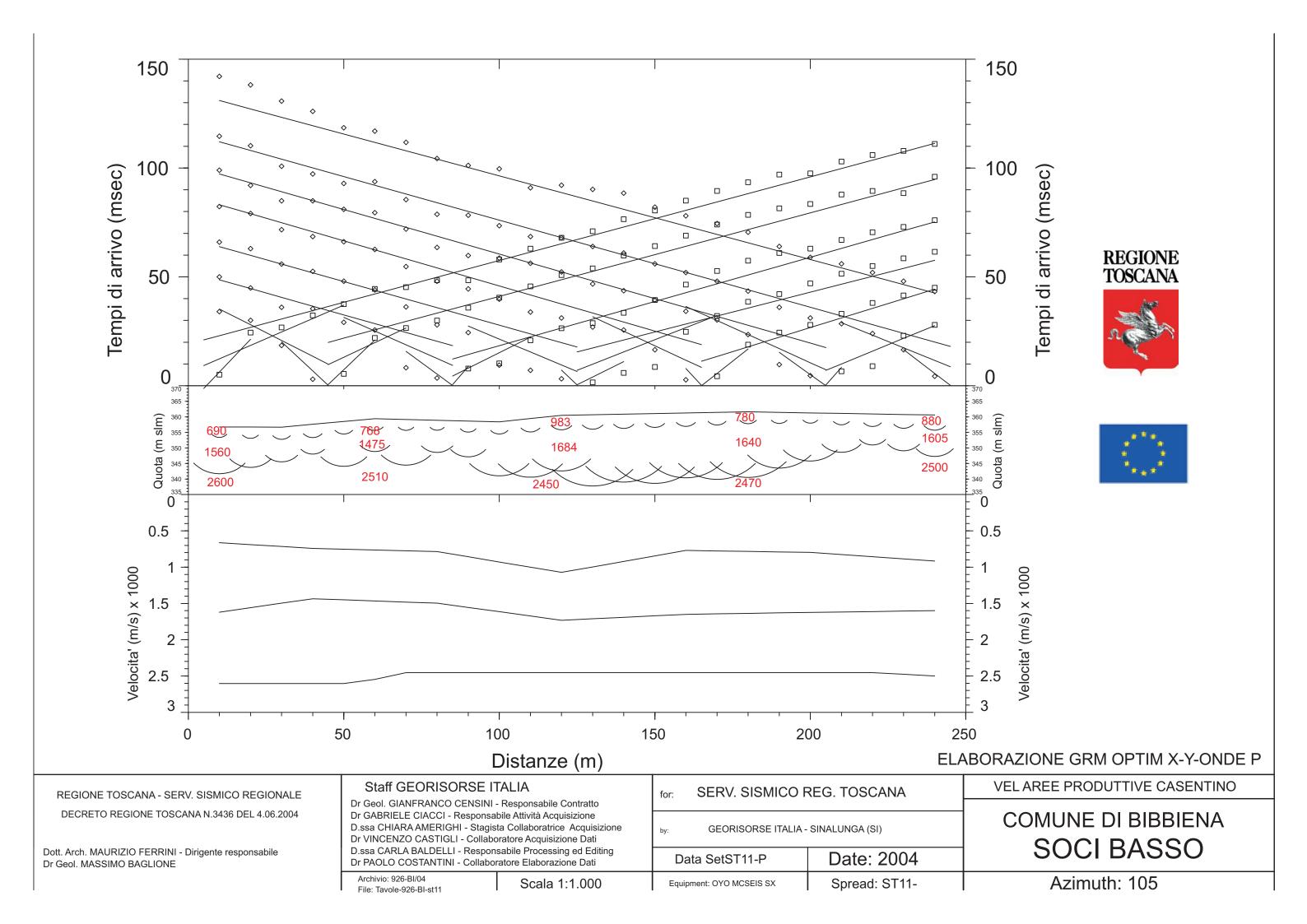
Allegato B Schede di valutazione campioni

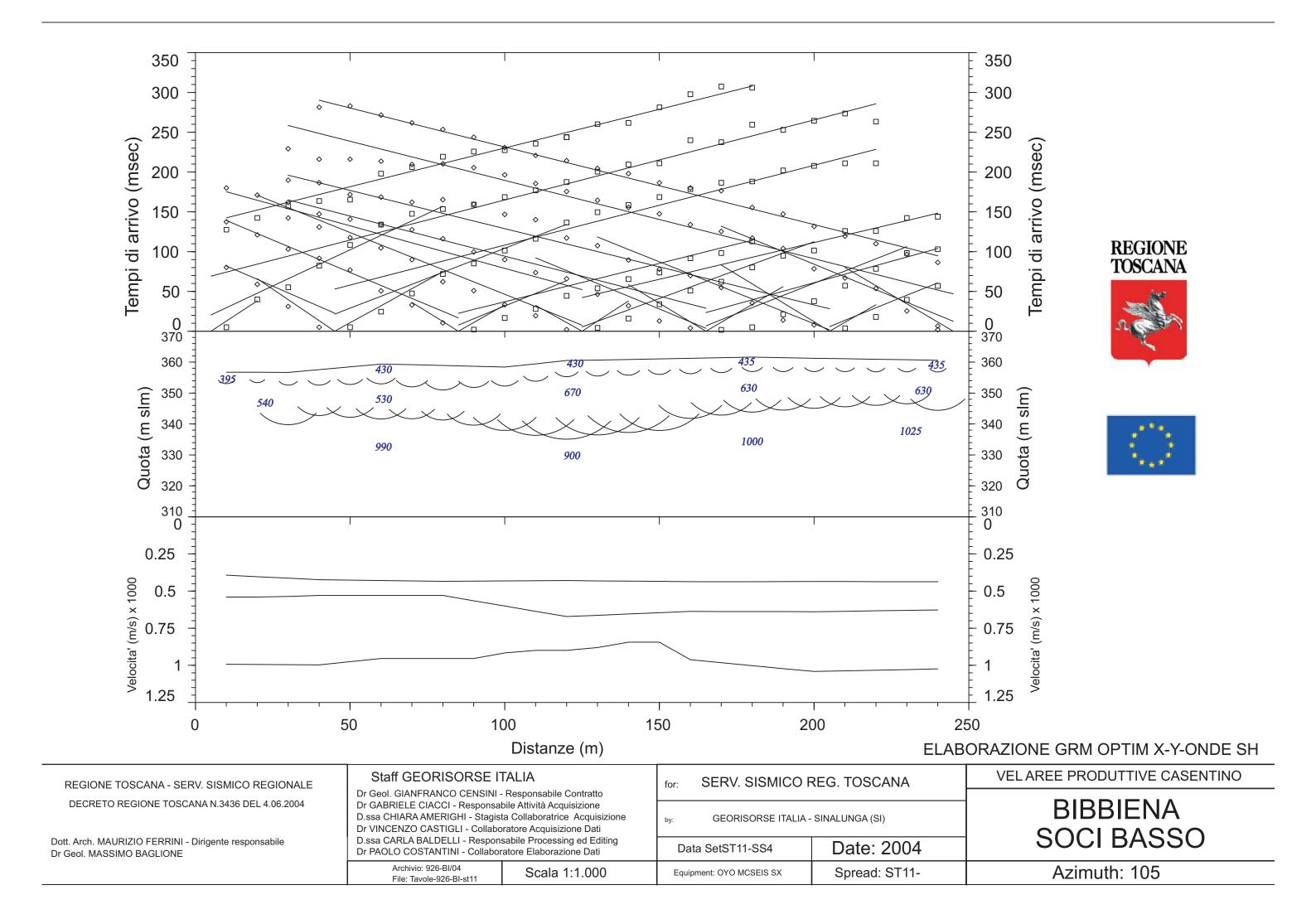
Comune - Località – Sondaggio	Impresa esecutrice	Campione (sigla, tipo, data prelievo)	Profondità (m)	Classe Campionatore	Classe Campione (AGI)

ALLEGATO 1 - CRITERI DI VALUTAZIONE DELLE FUSTELLE

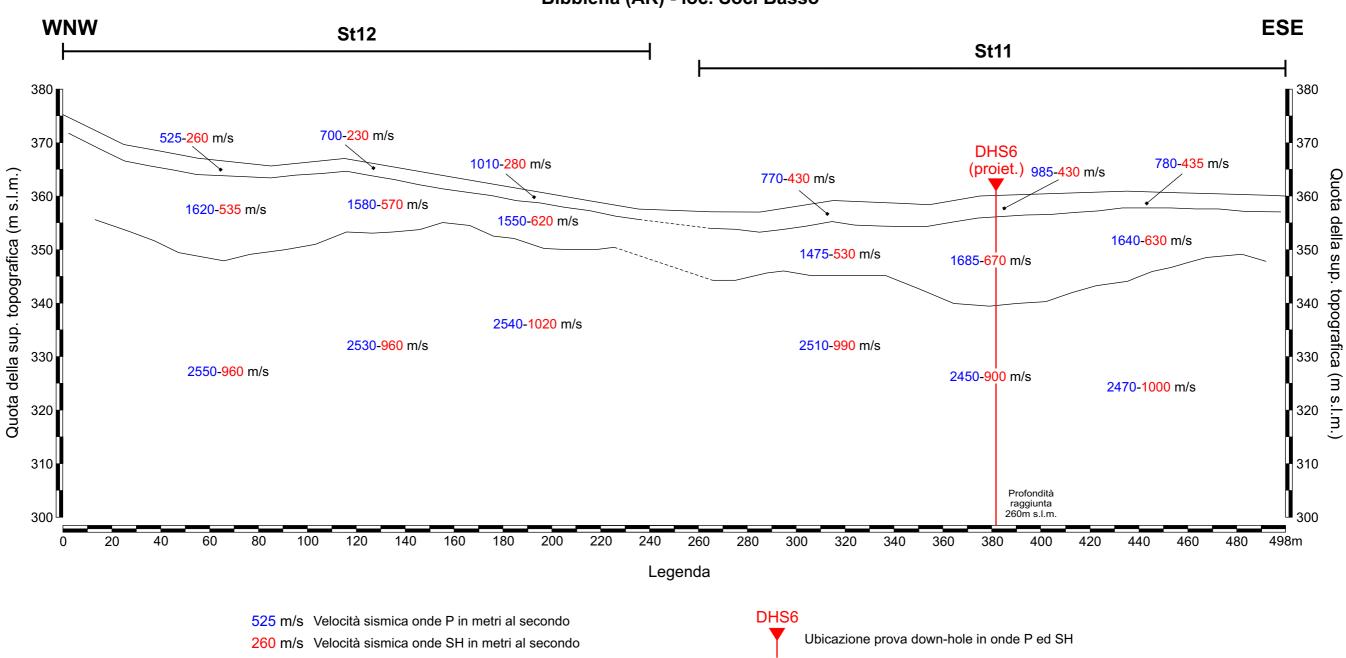
<u>Valutazione delle fustelle</u>. A tal fine sono distinte 3 classi di valutazione sulla base delle caratteristiche del tubo campionatore (fustella) e del campione al momento dell'arrivo in laboratorio:

- A) Tubo campionatore in buone condizioni e rispondenti ai requisiti delle IT;
- C) Tubo campionatore in cattive condizioni (Scarpa ammaccata) inidoneo alla garanzia di un campione di buona qualità.




Comune - Località – Sondaggio	Impresa esecutrice	Campione (sigla, tipo, data prelievo)	Profondità (m)	Classe Campionatore	Classe Campione (AGI)

ALLEGATO 1 – CRITERI DI VALUTAZIONE DELLE FUSTELLE


<u>Valutazione delle fustelle</u>. A tal fine sono distinte 3 classi di valutazione sulla base delle caratteristiche del tubo campionatore (fustella) e del campione al momento dell'arrivo in laboratorio:

- A) Tubo campionatore in buone condizioni e rispondenti ai requisiti delle IT;
- **B)** Tubo campionatore non rispondente ai requisiti delle IT. I campioni sono comunque giudicati nella classe adeguata;
- C) Tubo campionatore in cattive condizioni (ovalizzazioni, ruggine, danneggiamenti durante il trasporto, etc.) inidonei alla garanzia di un campione di buona qualità.

STESE SISMICHE A RIFRAZIONE - ONDE P ed SH Bibbiena (AR) - loc. Soci Basso

NOTE: L'elaborazione delle dromocrone porta a due sezioni sismostratigrafiche, in onde P ed in onde SH, congruenti. Pertanto viene utilizzata un'unica sezione grafica, valida per entrambe le energizzazioni. Nella sezione vengono rappresentati i sismostrati individuati, indicando le rispettive velocità di propagazione delle onde P (in blu) e delle onde SH (in rosso). Lungo la sezione è indicato il punto di realizzazione dell' indagini geofisiche in foro (prove down-hole in onde P ed SH), con relativa profondità. In particolare, il down-hole DHS6 è ubicato 130m a Sud della stesa sismica.

VALIDAZIONE DATI: La ricostruzione della sezione, elaborata nella fase di omogeneizzazione, considerando il quadro geologico di riferimento, ha confermato, per quanto attiene alla sezione sismostratigrafica, la versione fornita dalla Ditta esecutrice dell'indagine. Pertanto, in questo caso si è provveduto soltanto all'omogeneizzazione del formato grafico della sezione.

COMUNE DI BIBBIENA PROVINCIA DI AREZZO

TITOLO:

INDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA (ONDE P ED SH) CALCOLO VS₃₀ - D.M. 14/01/2008 LOC. FERRANTINA— BIBBIENA (AR)

COMMITTENTE:

OCCHIOLINI FRANCESCO & C. S.N.C.

OGGETTO:

RELAZIONE TECNICA

DATA: 05 Gennaio 2012

TRIGEO S.N.C.

VIA MAZZINI, 18 – 52011 SOCI (AR)
VIA BOLOGNESE, 289 – 50139 LA LASTRA - FIRENZE
TEL/FAX 0575 294500 – CELL. 3392288117
TEL/FAX 055 9062212 – 3287213928
P.IVA 02024110518

E-MAIL: info@trigeo.it - www.trigeo.it

ÎNDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA LOC. FERRANTINA – BIBBIENA (AR)

Gennaio 2012

Comune di Bibbiena

Pag. 1 di 14

INDICE

INTRODUZIONE	2
1.0 SCHEMA OPERATIVO	3
2.0 METODOLOGIA D'INDAGINE SISMICA E STRUMENTAZIONE IMPIEGATA	3
3.0 PRESENTAZIONE DEGLI ELABORATI GRAFICI	6
4.0 ANALISI DEI RISULTATI DELL'INDAGINE EFFETTUATA	7
5.0 CATEGORIA SUOLO DI FONDAZIONE OTTENUTA DAI VALORI DI VS30	9
6.0 CONSIDERAZIONI FINALI	. 12
ALLEGATI	13

INDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA LOC. FERRANTINA - BIBBIENA (AR)

Gennaio 2012

Comune di Bibbiena

Pag. 2 di 14

INTRODUZIONE

La presente relazione tecnica riferisce sui risultati dell'indagine sismica eseguita mediante sismica a rifrazione (acquisizione ed elaborazione dati con metodologia tomografica) nel mese di Dicembre 2011, per conto della committenza, all'interno di un'area dove è prevista la costruzione di due ampliamenti ad edificio per attività produttive, posta in località FERRANTINA nel COMUNE DI BIBBIENA (AR) (Figura 1).

Figura 1: Area d'intervento in loc. Ferrantina (Bibbiena - Ar), particolare della sezione 1-1'.

Dopo aver preso visione della zona e delle problematiche ad essa connesse è stata programmata, una campagna di prospezioni geofisiche mediante sismica a rifrazione tesa a fornire, lungo la sezione, convenuta con il tecnico incaricato, Dott. Geol. Luca Miani una caratterizzazione delle litologie presenti nell'area d'indagine nonché determinare le geometrie (spessori e superfici di contatto) nel sottosuolo dei terreni in funzione dell'andamento in profondità delle velocità delle onde sismiche compressionali P e di taglio SH. I dati ottenuti sono stati elaborati sia con la metodologia classica della rifrazione (GRM) che con la metodologia tomografica che permette di ottenere, attraverso un maggior numero di "energizzazioni" (7 per ogni stendimento) ed un opportuno software di elaborazione, un'ottima caratterizzazione del substrato e dei materiali di copertura.

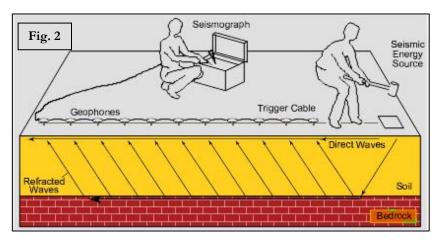
Gennaio 2012	
Comune di Bibbiena	
Pag. 3 di 14	٦

L'acquisizione delle onde SH combinate alle onde di compressione consente di ottenere i principali parametri elastico/dinamici e di fornire i valori di velocità delle onde di taglio mediate sui primi 30 m (cosiddette $V_{\rm S30}$), così come richiesto dal D.M. 14/01/2008 Testo Unico - Norme Tecniche per le Costruzioni.

Di seguito viene descritto, lo schema operativo e le operazioni di campagna, le strumentazioni e le modalità di analisi dei dati, congiuntamente all'interpretazione scaturita dai dati elaborati.

1.0 SCHEMA OPERATIVO

Nella **Tavola 01** allegata, è stato riportato un inquadramento corografico in scala 1:500 con inserita la sezione sismica eseguita.


Dopo una prima analisi dei test eseguiti in loco ed in considerazione dei risultati prefissati e degli spazi a disposizione è stata scelta una distanza intergeofonica di 4 m per la sezione 1-1', eseguita sia con Onde P che con Onde SH. Complessivamente sono stati acquisiti **92 ml** di rilievo.

2.0 METODOLOGIA D'INDAGINE SISMICA E STRUMENTAZIONE IMPIEGATA

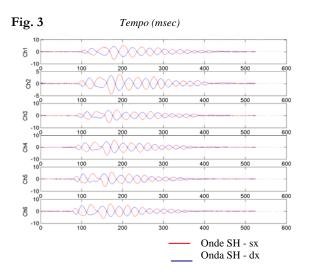
Il principio dell'analisi sismica è basato sul calcolo del tempo che impiega un'onda sismica ad attraversare differenti strati del sottosuolo; la velocità con cui la deformazione prodotta artificialmente si propaga nei terreni è funzione delle caratteristiche elastiche dei terreni stessi e pertanto la possibilità di determinare dette velocità con grande dettaglio permette di assegnare caratteri ragionevolmente

realistici ai terreni da investigare e di seguirne l'andamento in profondità.

Un sistema digitale di acquisizione dati (Fig. 2) in sismica, è costituito sostanzialmente da sismometri (geofoni o accelerometri), amplificatori, filtri, convertitori

A/D e supporti per la memorizzazione dei dati digitali.

Gennaio 2012	
Comune di Bibbiena	


Pag. 4 di 14

Nel nostro caso è stato utilizzato un sismografo PASI mod. 16S24 a 24 canali, dotato di filtri analogici e digitali, *notch filter* a 50 Hz ed *Automatic Gain Control*, con risoluzione di acquisizione pari a 24 bit con sovracampionamento e post-processing, 4 contatori indipendenti, base dei tempi 20 Mhz, accuratezza ± 0.01%, trattamento dei dati come Floating Point 32 bit, processore Pentium Intel, ambiente operativo Windows ed un Hard Disk da 10 Gb dove vengono immagazzinati i dati acquisiti, i dati sono quindi visualizzati sul display VGA a colori in LCD-TFT 10.4". le registrazioni vengono gestite dal PC interno ed in seguito trasferite mediante RS232 ad altri PC per le successive elaborazioni.

Per quel che riguarda i sensori, sono stati utilizzati geofoni "PASI" verticali ed orizzontali, del tipo elettromagnetico a bobina mobile e nel caso dei geofoni orizzontali dotati di bolla livellante, con frequenza caratteristica di 10 Hz, 70 % di smorzamento. Il cavo di connessione tra geofoni e sismografo è uno standard NK-27-21C.

Generalmente come sorgente di energia sismica per le onde P, nel caso di rilievi a piccola profondità si fa uso di una mazza da 8 kg o del Minibang: nel nostro caso, dato le distanze in gioco,

l'utilizzo della mazza ha consentito di ottenere risultati ottimali. Per quel che riguarda la produzione di onde SH si utilizza generalmente una trave di circa 2.00 m di lunghezza, la cui estremità viene colpita con una massa battente di ca. 10/15 kg. La trave è resa solidale al terreno mediante l'applicazione di un carico (rappresentato nel nostro caso dalla stessa autovettura). La tavola viene colpita lateralmente dalla massa, in modo da generare onde di taglio SH. Per poter riconoscere in maniera inequivocabile sui

sismogrammi le onde di taglio S, che non costituiscono mai la prima fase, sono state effettuate energizzazioni ai due estremi della tavola, in modo da generare treni d'onda identici, ma in opposizione di fase (Fig. 3). Ogni energizzazione viene registrata sull'Hard Disk sia singolarmente che, invertendo la fase, come somma.

Il metodo di elaborazione utilizzato nel corso delle analisi dei dati in rifrazione, è stato il Generalized Reciprocal Method (GRM) che consente di delineare rifrattori ondulati, ad ogni profondità e di numero infinito da dati sismici a rifrazione in linea che consistano di tempi-distanza in andata e

Gennaio 2012

Comune di Bibbiena

Pag. 5 di 14

ritorno. I tempi di arrivo a due sensori distinti e per profili in andata e ritorno sono combinati per ottenere la velocità del rifrattore, il calcolo della sezione tempi-profondità ed il fattore di conversione in profondità. Il fattore di conversione, e quindi il metodo, è indipendente dalla pendenza degli strati fino ad angoli superiori a 20 gradi. Il GRM in definitiva è un metodo di interpretazione globale e sintetico per il quale molti dei metodi esistenti sono dei casi particolari.

Oltre al GRM, in alcuni casi, è stato utilizzato, per conferma e confronto, un algoritmo di inversione che usa il *delay-time method* per ottenere un primo modello approssimato in profondità, che viene quindi affinato mediante una serie di *ray-tracing*, ed un processo di aggiustamento con iterazioni successive che tende a minimizzare le discrepanze tra i tempi di arrivo misurati in campagna ed il corrispondente modello di profondità. In questo caso specifico è stato utilizzato come sistema di elaborazione principale il *delay-time method* affinato mediante una serie di *ray-tracing*, ed il GRM come verifica e conferma dei risultati ottenuti.

Terminata la fase preliminare di verifica dati, mediante la metodologia GRM, è stato utilizzato un nuovo sistema di analisi dei dati sismici che consente di elaborare profili a bassa, media ed elevata copertura. Le dromocrone ricavate dall'interpretatore vengono elaborate sulla base di tre distinte metodologie analitiche: CMP (intercept time refraction), Plus-Minus e Wavefront. Il metodo Wavefront rappresenta un'ulteriore ottimizzazione del metodo GRM. Invece di assumere come costante la distanza XY tra i vari ricevitori, il metodo Wavefront stima ad ogni geofono la distanza rispetto agli altri, attraverso l'angolo d'emergenza del fronte d'onda sia diretto che inverso. Tale caratteristica permette di analizzare, con ottimi risultati, anche rifrattori con superfici irregolari.

Il software, utilizzato nel corso del presente lavoro, permette, successivamente ai predetti passaggi, di utilizzare il metodo "Delta-t-V" che è in grado di evidenziare gradienti di velocità verticali all'interno degli strati, aumenti lineari di velocità con la profondità, faglie e locali anomalie di velocità. Il metodo Delta-t-V valuta la distribuzione delle velocità lungo il profilo di interesse. Ciò consente, sfruttando il metodo dell'inversione, di ottenere in corrispondenza delle varie stazioni installate, valori di profondità in funzione della velocità.

I dati così ottenuti vengono definitivamente elaborati mediante metodologia tomografica che permette una stima migliore delle velocità, risultando meno dipendente dalla spaziatura dei ricevitori e da topografie estreme.

Infine sono stati calcolati i valori di velocità delle onde di taglio mediate sui primi 30 m (cosiddette $V_{\rm S30}$), come richiesto dalla nuova "Norme Tecniche per le Costruzioni" D.M. 14 Gennaio 2008 e dall'O.P.C.M. n° 3274 del 20/03/2003.

info@trigeo.it

Gennaio 2012

Comune di Bibbiena

Pag. 6 di 14

3.0 Presentazione degli elaborati grafici

Nelle **Tavole 02** (onde P) - **06** (onde SH) sono rappresentate, nella parte in alto, le curve tempi-distanze, Dromocrone, che scaturiscono dalle letture eseguite sui dati di campagna mentre nella parte bassa, una analisi di velocità che testimonia delle variazioni laterali di velocità lungo la superficie rifrangente principale (substrato); tale analisi si basa sui risultati ottenuti dalla applicazione delle "Velocity Analysis Function" tra sensori diversi e quindi mediando tra valori contigui. Nel diagramma tempi-distanze, in ascisse, in scala 1:500 sono riportate le distanze dei sensori dall'inizio dell'allineamento e, in ordinate, i tempi di arrivo, espressi in millisecondi agli stessi sensori.

Nelle **Tavole 03 - 07**, sono state riportate le sezioni sismostratigrafiche ottenute, al di sotto della superficie topografica l'inviluppo dei cerchi rappresenta l'interfaccia tra uno strato ed un altro. I metodi di interpretazione in sismica a rifrazione forniscono, infatti, gli spessori degli strati valutando la distanza minima tra i sensori ed il rifrattore sulla perpendicolare allo strato e non sulla sua verticale; di conseguenza la superficie rifrangente, al di sotto di ogni dato punto, può giacere ovunque su di un cerchio centrato in quel punto e con raggio uguale allo spessore dello strato.

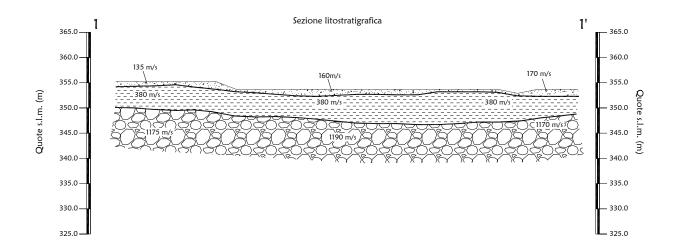
Ciò è quanto riportato nelle sezioni al di sotto della superficie topografica. L'inviluppo dato da questi cerchi è una buona approssimazione della forma e posizione del rifrattore.

Nelle **Tavole 04- 08** sono riportate le sezioni interpretate (sezioni litostratigrafiche) sulla base sia dei dati ottenuti (sezioni sismostratigrafiche), sia di considerazioni geologiche generali che di 3 prove penetrometriche eseguite nell'area.

Entrambe le rappresentazioni propongono, in ascisse, in scala 1:500 le distanze dei sensori dall'inizio del profilo e, in ordinate, sempre in scala 1:500, le quote in metri sul livello del mare.

Infine nelle **Tavole 05-09** (onde P-SH) abbiamo le sezioni tomografiche interpretate realizzate mediante la "WET Tomography" con le relative curve di isovelocità. Al di sotto di queste sezioni bidimensionali (quote/lunghezza dello stendimento) viene riportata una scala in falsi colori che esprime i valori di velocità all'interno della sezione. Al di sotto delle sezioni tomografiche vengono riportate le sezioni litostratigrafiche interpretative, scaturite interpretando sia le sezioni sismiche ottenute con GRM che le sezioni tomografiche.

Le sezioni litostratigrafiche interpretate e le tomografie sismiche, rappresentano il risultato conclusivo dell'analisi dei dati sintetizzati nelle tavole e tabelle allegate.


Gennaio 2012

Comune di Bibbiena

Pag. 7 di 14

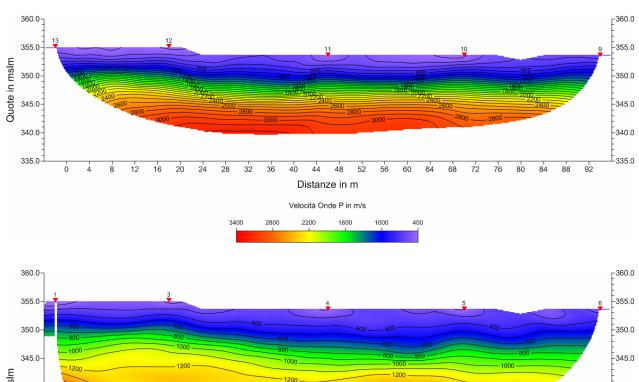
4.0 Analisi dei risultati dell'indagine effettuata

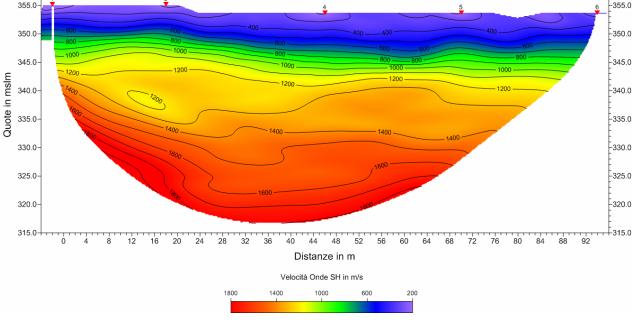
I risultati ottenuti dalla sezione eseguita rispettivamente con Onde P ed Onde SH indicano la presenza di due superfici rifrangenti che si localizzano rispettivamente a profondità medie prossime a 0.9/1.5 m e a 5.90 m.

Nella zona d'intervento il primo rifrattore mette a contatto terreno vegetale, caratterizzato da velocità delle onde sismiche compressionali comprese tra 330 e 400 m/s e da velocità delle onde di taglio (SH) comprese tra 135-170 m/s, con un orizzonte di limo argilloso sabbioso con ghiaie, che presenta velocità delle onde sismiche compressionali pari a 950 m/s e velocità delle onde di taglio (SH) pari a 380 m/s. Mentre il secondo rifrattore mette in contatto i depositi limo sabbioso argillosi con un orizzonte di ghiaie (o conglomerati) che presenta velocità sismiche pari a 2.650 m/s (onde P) e 1.170 m/s (onde Sh).

La **Sezione 1-1',** effettuata in direzione NO-SE, è stata elaborata seguendo le informazioni del GRM, che ha permesso di ricostruire l'andamento dei 2 rifrattori.

Il primo rifrattore individuato sia dalle onde P che dalle onde SH, mostra un andamento che tende a seguire l'andamento della morfologia superficiale. Il rifrattore più profondo presenta un andamento sub-orizzontale, quello individuato dalle onde SH è mediamente posizionato a quote leggermente inferiori, rispetto al rifrattore individuato dalle onde P, poiché le onde P risentono della presenza dell'acqua mentre le onde Sh no.




Gennaio 2012 Comune di Bibbiena

Pag. 8 di 14

L'analisi tomografica eseguita sia mediante onde P che SH conferma quanto già evidenziato ossia una coltre superficiale a bassa velocità piuttosto limitata.

Più in profondità è presente un aumento graduale delle velocità sismiche legato all'incremento del carico litostatico, sino a ca. 5/6 m dove è presente un incremento repentino delle velocità, evidenziato da un raffittimento delle curve di isovelocità.

Le velocità delle onde sismiche compressionali P osservate lungo il rifrattore profondo risultano piuttosto omogenee, tendono a oscillare lungo la sezione intorno ai valori di 2.700 m/s.

INDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA LOC. FERRANTINA - BIBBIENA (AR)

Gennaio 2012
Comune di Bibbiena
Pag 9 di 14

Anche le velocità delle onde di taglio SH, all'interno del rifrattore più profondo mostrano un andamento piuttosto omogeneo ed oscillano intorno ai 1170 m/s.

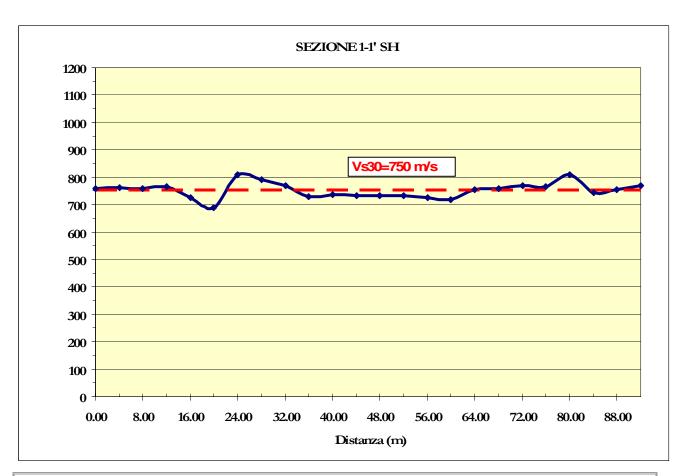
5.0 CATEGORIA SUOLO DI FONDAZIONE OTTENUTA DAI VALORI DI VS30

L'indagine mediante onde SH fornisce i valori di velocità delle onde di taglio mediate sui primi 30 m (cosiddette Vs30), così come previsto dal D.M. 14/01/2008 Testo Unico - Norme Tecniche per le Costruzioni.

Le "Nuove Norme Tecniche per le costruzioni" definiscono 7 tipologie di suoli principali:

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di V _{s,30} superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{s,30} > 250$ kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{s,30} compresi tra 180 m/s e 360 m/s (ovvero 15 < N _{SPT,30} < 50 nei terreni a grana grossa e 70 < c _{u,30} < 250 kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} \le 15$ nei terreni a grana grossa e $c_{0,30} \le 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con V _s > 800 m/s).
S1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100 m/s (ovvero $10 \le c_{u,30} \le 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

La profondità tenuta in considerazione nel calcolo della Vs30 differisce in funzione del tipo di fondazione e del tipo di opera:


Gennaio 2012
Comune di Bibbiena
Pag. 10 di 14

Per le **fondazioni superficiali**, tale profondità è riferita al **piano di imposta** delle stesse, mentre per le fondazioni su **pali** è riferita alla **testa dei pali**.

Nel caso di *opere di sostegno di terreni naturali*, la profondità è riferita alla **testa** dell'opera.

Per **muri di sostegno di terrapieni**, la profondità è riferita al **piano di imposta** della fondazione.

Nella figura sottostante è illustrato l'andamento della Vs30 calcolata lungo la Sez. 1-1' da p.c.:

TRIGEO SNCVIA MAZZINI, 18 – 52011 SOCI (AR)
TEL/FAX 0575 294500 - CELL. 3392288117

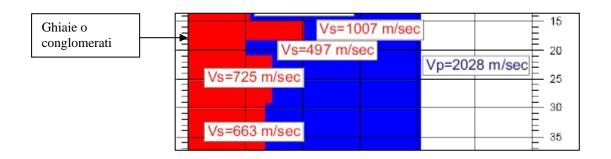
www.trigeo.it

VIA BOLOGNESE 289 — 50139 LA LASTRA — FIRENZE

TEL/FAX 055 9062212 — CELL. 3287213928

ÎNDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA LOC. FERRANTINA - BIBBIENA (AR)

Gennaio 2012					
Comune di	Bibbiena				


Pag. 11 di 14

Sulla base dei valori di velocità ottenuti è stato possibile definire il valore di Vs30 media per l'area in oggetto:

Vs30 = 750 m/s

Sulla base di informazioni fornite da due Down Hole (S2-S6) eseguiti per il progetto VEL della Regione Toscana, in due aree limitrofi è possibile dedurre che al di sotto dell'orizzonte di ghiaie siano presenti alternanze di livelli di argille e ghiaie, e che quindi sia presente un'inversione di velocità sismiche che rappresenta un limite della sismica a rifrazione di superficie.

Quindi per la definizione della categoria del suolo di fondazione al di sotto dell'orizzonte di ghiaie vengono utilizzati i dati forniti dal Down Hole S2 (che si avvicina maggiormente come caratteristiche stratigrafiche e sismiche, ai risultati dell'indagini di sismica superficiale, considerando la differenza di quota tra le due aree, lo strato con Vs=1007 m/s (del Down Hole S6 ubicato tra 15 e 18 m è riconducibile all'orizzonte di ghiaie individuato a ca. 6 m di profondità da p.c. nell'area in esame).

Tratto di **DH** 6, usato per integrare l'indagine sismica al di sotto dell'orizzonte di ghiaie.

La Vs30 così calcolata risulta pari a 580 m/s

ALL'AREA IN ESAME VIENE COSÌ ASSEGNATA UNA:

CATEGORIA DI SUOLO DI FONDAZIONE: B

INDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA LOC. FERRANTINA - BIBBIENA (AR)

Gennaio 2012

Comune di Bibbiena

Pag. 12 di 14

La Vs30 così calcolata rappresenta un'assunzione cautelativa, poiché calcolata dal piano campagna e non dal piano di posa delle fondazioni.

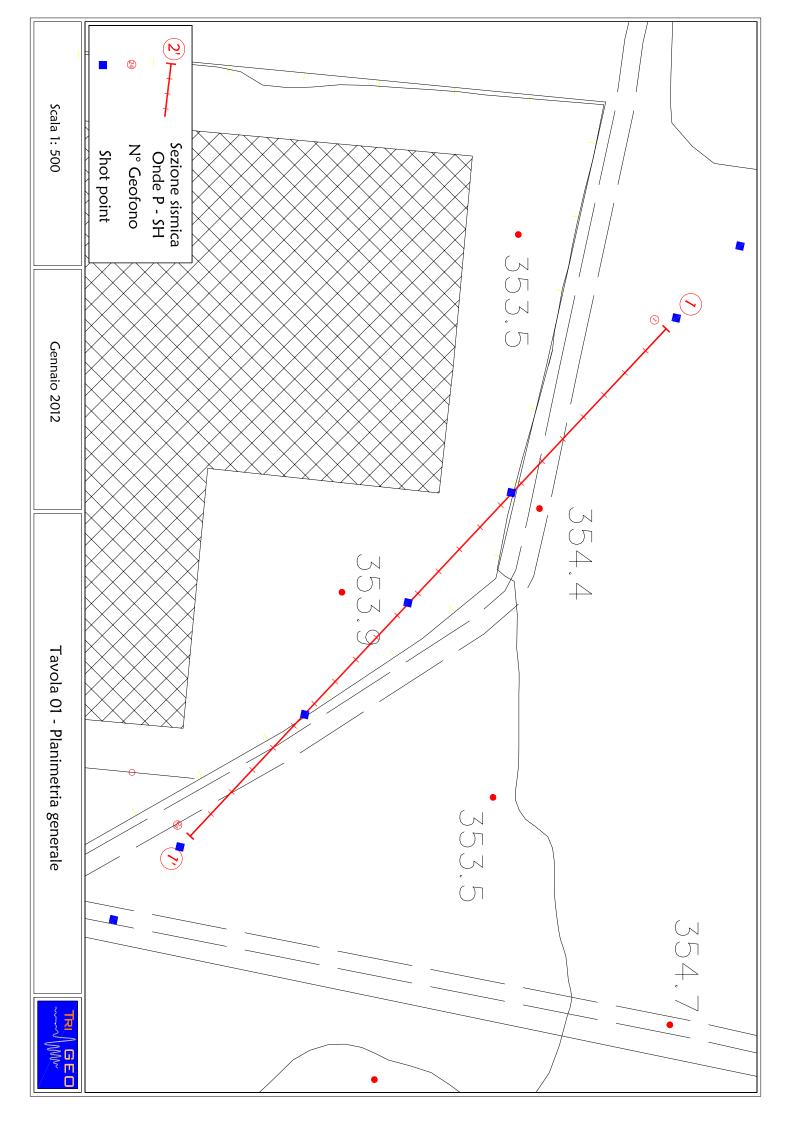
6.0 CONSIDERAZIONI FINALI

Il presente studio ha individuato le caratteristiche geofisiche dei materiali superficiali e profondi di un'area, dove è prevista la costruzione di due ampliamenti ad un edificio per attività produttive, posta in località FERRANTINA nel COMUNE DI BIBBIENA (AR). L'indagine geofisica di superficie, eseguita mediante sismica a rifrazione ed elaborazione tomografica, ha permesso di identificare in profondità il passaggio tra i materiali più superficiali (terreno vegetale) con i depositi limo sabbiosi argillosi, e tra questi ed un orizzonte di ghiaie (o conglomerati).

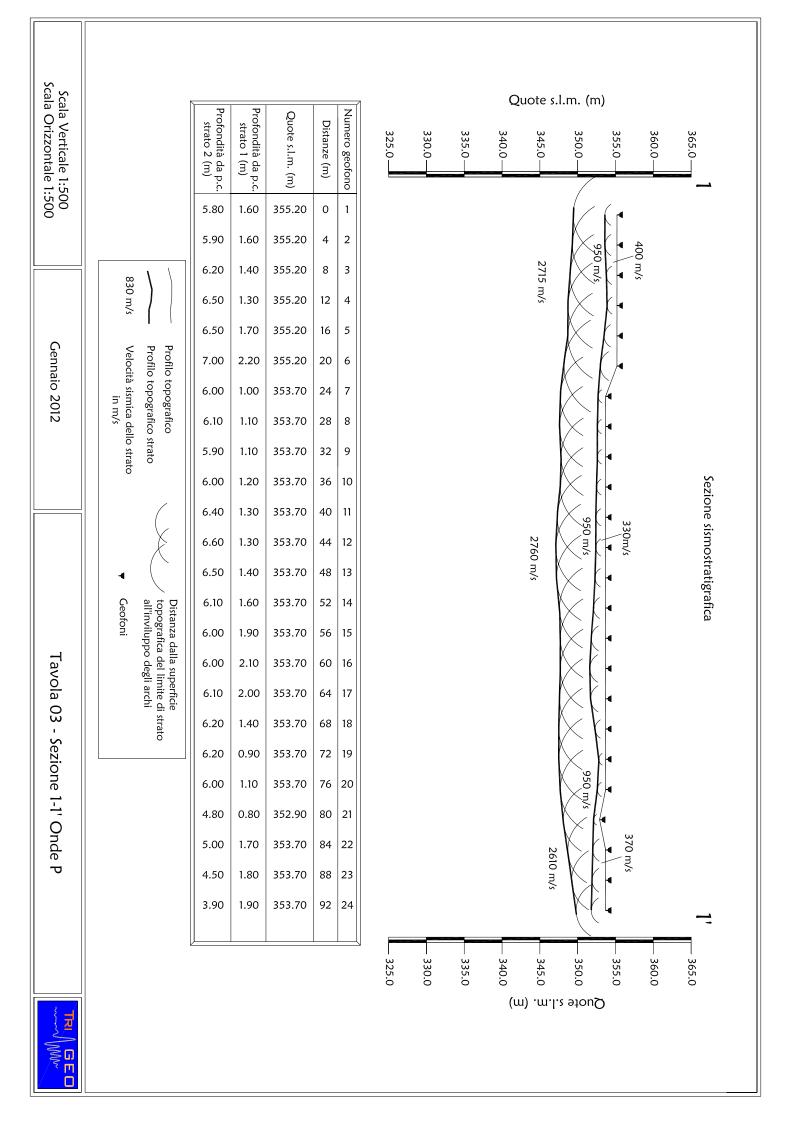
Sulla base di quanto fino ad ora riportato è possibile trarre le seguenti considerazioni conclusive relativamente all'area in oggetto:

- o sono state riconosciute due superfici rifrangenti che si localizzano rispettivamente a profondità medie prossime a 0.9/1.5 m e a 5.90 m;
- o nella zona d'intervento il primo rifrattore mette a contatto terreno vegetale, caratterizzato da velocità delle onde sismiche compressionali comprese tra 330 e 400 m/s e da velocità delle onde di taglio (SH) comprese tra 135-170 m/s, con un orizzonte di limo argilloso sabbioso con ghiaie, che presenta velocità delle onde sismiche compressionali pari a 950 m/s e velocità delle onde di taglio (SH) pari a 380 m/s. Mentre il secondo rifrattore mette in contatto i depositi limo sabbioso argillosi con un orizzonte di ghiaie (o conglomerati) che presenta velocità sismiche pari a 2.650 m/s (onde P) e 1.170 m/s (onde Sh).
- o è stata calcolata, come previsto dal D.M. 14/01/2008 Testo Unico Norme Tecniche per le Costruzioni, una Vs30 mediata sui primi 30 m, pari a 580 m/s che definisce in base alle considerazioni riportate nel Cap 5 una Categoria del suolo di fondazione di tipo B.

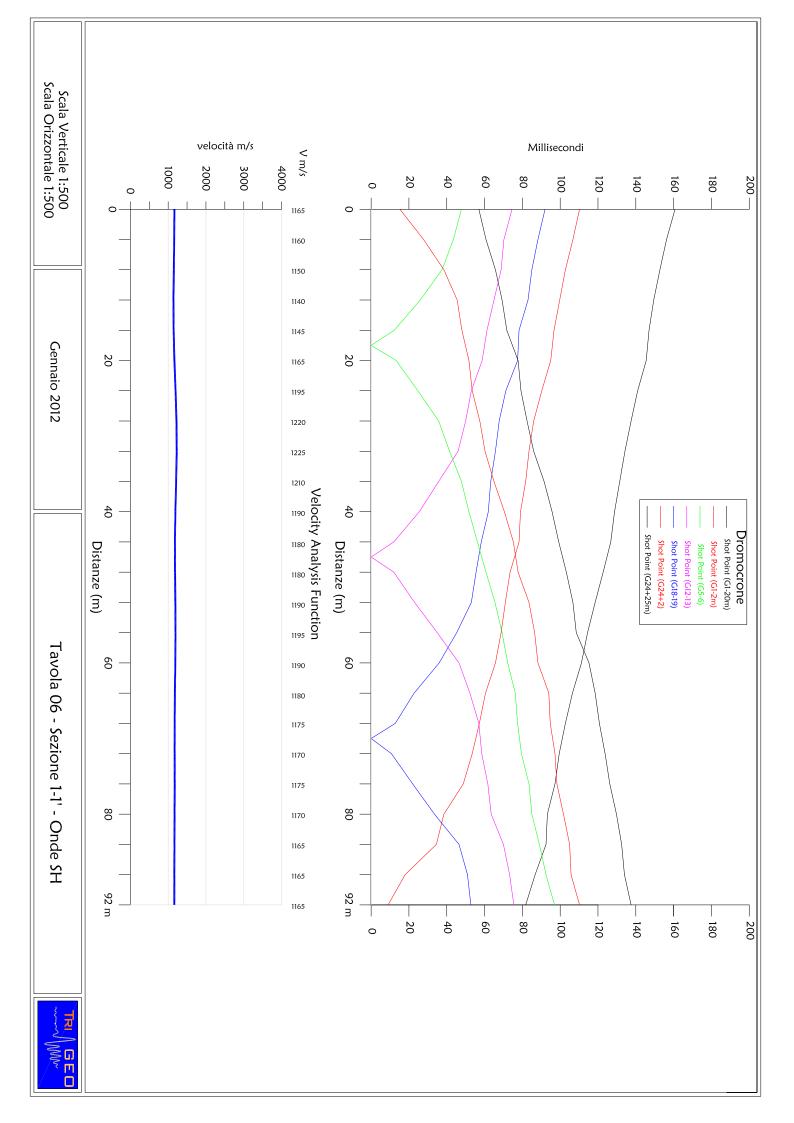
Arezzo, lì 05/01/2012

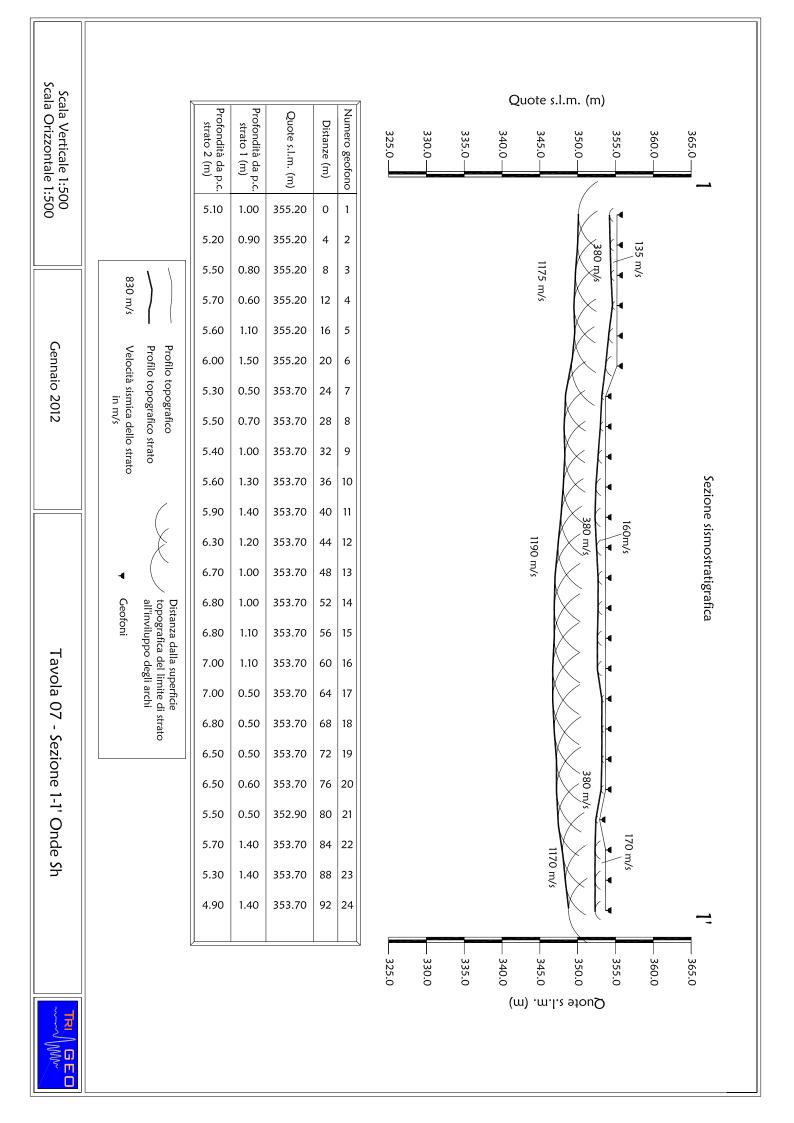

ÎNDAGINE GEOFISICA DI SUPERFICIE MEDIANTE SISMICA A RIFRAZIONE E TOMOGRAFIA SISMICA LOC. FERRANTINA – BIBBIENA (AR)

Gennaio 2012


Comune di Bibbiena

Pag. 13 di 14


ALLEGATI



Scala Verticale 1:500 Scala Orizzontale 1:500 Quote s.l.m. (m) 365.0 325.0-330.0-335.0-340.0 345.0 350.0-360.0-400 m/s 950 m/s Gennaio 2012 terreno vegetale Sezione litostratigrafica ghiai e/o conglomerati cementati -950 m/s limo sabbioso argilloso con ghiaia 330m/s LEGENDA Tavola 04 - Sezione 1-1' Onde P -950 m/s 370 m/s **—** 325.0 **—** 330.0 **-** 360.0 - 355.0 335.0 340.0 345.0 350.0 365.0 Quote s.l.m. (m)

Scala Verticale 1:500 Scala Orizzontale 1:500 Quote s.l.m. (m) 365.0 325.0-330.0-335.0-340.0 345.0 350.0-360.0-135 m/s 380 m/s Gennaio 2012 terreno vegetale Sezione litostratigrafica ghiai e/o conglomerati cementati limo sabbioso argilloso con ghiaia -380 m/s_-LEGENDA Tavola 08 - Sezione 1-1' Onde Sh - 380 m/s 170 m/s **—** 325.0 **—** 330.0 **-** 360.0 **- 355.0** 335.0 340.0 345.0 350.0 365.0 Quote s.l.m. (m)

Sede Legale: Via Ser Gorello, 11/a - 52100 AREZZO - Cod. fiscale e P. IVA: 01358250510

Uffici e Deposito: Via A. Grandi, 51 - 52100 AREZZO

PROVA PENETROMETRICA STATICA MECCANICA LETTURE CAMPAGNA E VALORI TRASFORMATI

1 251-2011 riferimento certificato n° 566/2011 n° verb.accett. 351 del 22/12/2011

28/12/2011

TESSITURA OCCHIOLINI di Occhiolini F. & C. Committente:

Cantiere: Costruzione edificio industriale Ferrantina - Bibbiena - AR Località:

Data certificato: 30/12/2011 Pagina: Falda: -5,00 m da p.c. Elaborato:

Data esec.:

kg/cm²

U.M.:

ocalita.		erranuna							Liai	borato:	Falda	: -5,00 m	ua p.c.		
H m	L1	L2	Lt	qc kg/cm²	fs kg/cm²	F -	Rf %	H m	L1	L2	Lt	qc kg/cm²	fs kg/cm²	F -	Rf %
0,20 0,40	0,0 15,0	0,0 27.0		0,0 15,0	0.80	0 5	22,2 1,5					Ng/OIII	ngrom		
0,60 0,80 1,00	31,0 177,0 57,0	81,0 184,0 149,0		31,0 177,0 57,0	3,33 0,47 6,13 3,53	66 29 16	1,5 3,5 6,2								
1,20 1,40	36,0 30,0	89,0 64,0 70,0		36,0 30,0 31,0	2 27	16 12 18	6,3 8,7								
1,60 1,80 2,00	31,0 64,0 91,0	70,0 90,0 123.0		64,0 91.0	2,60 1,73 2,13 1,47	18 30 62 57	5,6 3,3 1,6								
2,20 2,40	118,0 60.0	90,0 123,0 140,0 91,0		118,0 60,0 71,0	2,07 4.13	15	1,8 6.9								
2,60 2,80 3,00	71,0 101,0 187,0	133,0 136,0 202,0		101,0 187.0	2,33 1,00 0,53	30 101 353	3,3 1,0 0,3								
3,20 3,40 3,60	77,0 96,0 40,0	85,0 154,0 66,0		77,0 96,0 40,0 35,0	3,87 1,73 2,33 2,60	20 55 17	5,0 1.8								
3,80 4,00	35,0 39,0	70,0 78.0		39,0	0,80	13 49	5,8 7,4 2,1 2,5								
4,20 4,40	57,0 81,0 127,0	69,0 102,0 234,0		57,0 81.0	1,40 7,13 4,80	41 11 26	2,5 8,8								
4,60 4,80 5,00	127,0 213,0 154,0	234,0 285,0 307,0		127,0 213,0 154,0	4,80 10,20 10,27	26 21 15	8,8 3,8 4,8 								
5,20	347,0	501,0		347,0											
]							

H = profondità

L1 = prima lettura (punta)

L2 = seconda lettura (punta + laterale)

Lt = terza lettura (totale) CT =10,00 costante di trasformazione

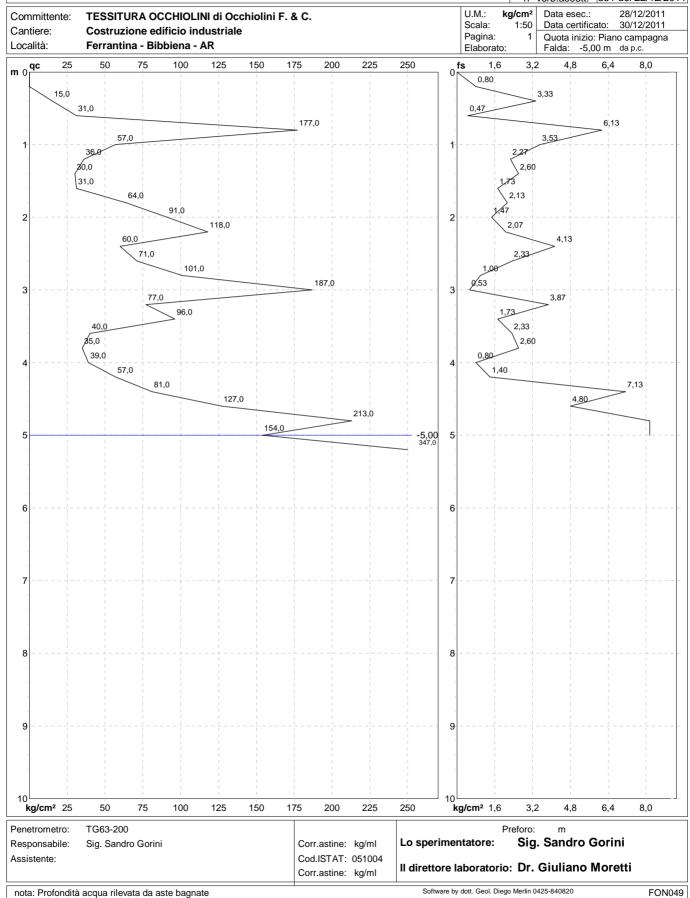
qc = resistenza di punta

fs = resistenza laterale calcolata

0.20 m sopra quota qc

F = rapporto Begemann (qc / fs) Rf = rapporto Schmertmann (fs / qc)*100

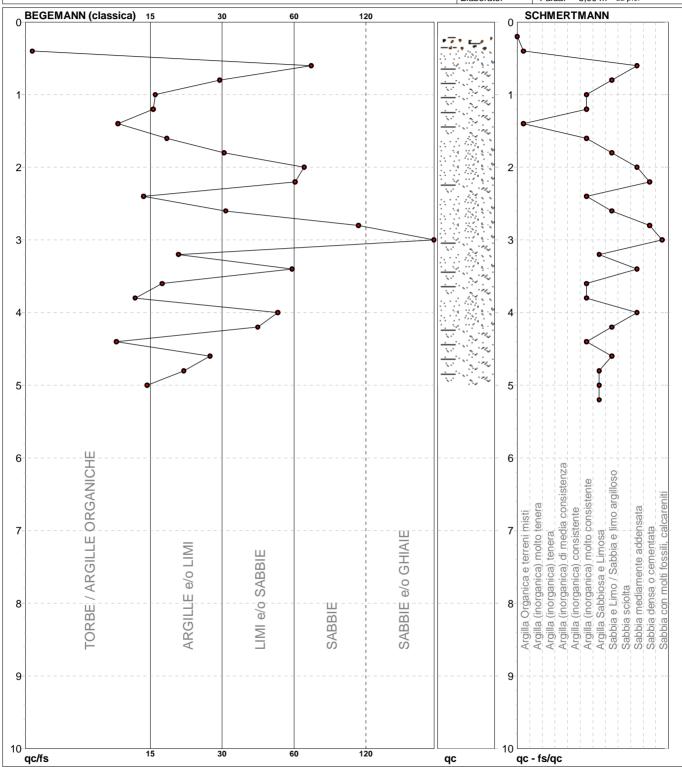
Sig. Sandro Gorini Lo sperimentatore:


Il direttore laboratorio: Dr. Giuliano Moretti

nota: Profondità acqua rilevata da aste bagnate

Software by dott. Geol. Diego Merlin 0425-840820

PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI DI RESISTENZA


riferimento 251-2011
certificato n° 566/2011
n° verb.accett. 351 del 22/12/2011

PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI LITOLOGIA

riferimento 251-2011
certificato n° 566/2011
n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 Committente: TESSITURA OCCHIOLINI di Occhiolini F. & C. Scala: 1:50 Data certificato: 30/12/2011 Costruzione edificio industriale Cantiere: Pagina: Località Ferrantina - Bibbiena - AR Elaborato: Falda: -5,00 m da p.c

Torbe / Argille org.: 7 punti, 14,29%
Argille e/o Limi: 8 punti, 16,33%
Limi e/o Sabbie: 6 punti, 12,24%
Sabbie: 3 punti, 6,12%
Sabbie e/o Ghiaie: 1 punti, 2,04%

Il direttore laboratorio: Dr. Giuliano Moretti

nota: Profondità acqua rilevata da aste bagnate

Software by dott. Geol. Diego Merlin 0425-840820

Sede Legale : Via Ser Gorello, 11/a - 52100 AREZZO - Cod. fiscale e P. IVA: 01358250510 Uffici e Deposito : Via A. Grandi, 51 - 52100 AREZZO

PROVA PENETROMETRICA STATICA MECCANICA **PARAMETRI GEOTECNICI**

1 251-2011 riferimento certificato n° 566/2011 n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 Committente: TESSITURA OCCHIOLINI di Occhiolini F. & C. Data certificato: 30/12/2011 Cantiere: Costruzione edificio industriale Pagina: Località: Ferrantina - Bibbiena - AR Elaborato: Falda: -5,00 m da p.c.

								IATU	NATURA GRANULARE												
Prof.	qc	qc/fs	zone	· '	σ'vo	Vs	Cu	OCR	Eu50	Eu25	Mo	Dr	øSc	øСа		øDB	øDM	øMe	F.L. E'50	E'25	Mo
m m	U.M.	40/13	20110	γ t/m³	U.M.	m/s	U.M.	%	U.M.	U.M.	U.M.	%	(°)	/°\	(°)	(0)	(°)	(°)	U.M.	U.M.	U.M.
0,20	O.W.			1,85	0,04		0.141.	70	O.IVI.	O.IVII.	O.IVI.	70	()	()	()	()	()	()	O.IVI.	O.IVI.	0.111.
0,20	15,0	4,5	2	1,85	0,04	154	0,67	98,0	113,3	170,0	49,5										
0,60	31.0	66,0	3	1.85	0.11	202						85	41	38	35	33	41	29	2,00 51,7	77.5	93,0
0,80	177,0	28,9	4 11/2	1,85	0,15	389	5,90	99,9	1003,0	1504,5	531,0	100	43	45	43	40	45	37	295,0	442,5	531,0
1,00	57,0	16,1	4	1,85	0,19	254	1,90	99,9	323,0	484,5	171,0	94	43	38	36	33	42	31	95,0	142,5	171,0
1,20	36,0	15,9	4 (%)	1,85	0,22	214	1,20	51,7	204,0	306,0	108,0	74	40	35	32	30	39	30	60,0	90,0	108,0
1,40	30,0	11,5	4 (1)	1,85	0,26	199	1,00	34,0	170,0	255,0	90,0	64	39	33	31	29	38	29	50,0	75,0	90,0
1,60 1,80	31,0 64,0	17,9 30,0	4 ~:.> 3 ::::.	1,85 1.85	0,30 0,33	202 265	1,03	30,0	175,7	263,5	93,0	61 83	39 41	33 36	30 33	28 31	37 40	29 32	51,7 2,00 106,7	77,5 160,0	93,0 192,0
2,00	91,0	61,9	3 ****	1,85	0,33	303						93	42	37	34	32	41	33	2,00 100,7	227,5	273,0
2,20	118,0	57,0	3	1.85	0,41	334						100	43	38	35	33	42	35	2,00 196,7	295,0	354.0
2,40	60,0	14,5	4 100	1,85	0,44	259	2,00	41,2	340,0	510,0	180,0	74	40	34	31	29	38	32	100,0	150,0	180,0
2,60	71,0	30,5	3	1,85	0,48	276						78	41	35	32	30	39	32	2,00 118,3	177,5	213,0
2,80	101,0	101,0	3	1,85	0,52	315						.88	42	36	33	31	40	34	2,00 168,3	252,5	303,0
3,00	187,0	352,8	3 ····· 4 ···· ··	1,85 1.85	0,56	397 284	2.57	39,3	420.2	654,5	231.0	100 76	43 40	39 34	36 31	34 29	42 38	37 33	2,00 311,7	467,5 192.5	561,0 231.0
3,20 3,40	77,0 96,0	19,9 55,5	4 ^·	1,85	0,59 0,63	309	2,57	39,3	436,3	004,0	231,0	82	40	35	32	30	39	33 34	128,3 2,00 160,0	240.0	288,0
3,60	40,0	17,2	4 ~~,>	1,85	0,63	222	1,33	15,0	226,7	340.0	120,0	50	37	30	27	25	34	30	66.7	100.0	120.0
3,80	35,0	13,5	4 (1)	1.85	0,70	211	1,17	11,8	198,3	297,5	105,0	45	37	29	26	25	33	29	58,3	87.5	105.0
4,00	39,0	48,8	3	1,85	0,74	220						47	37	29	26	25	33	30	2,00 65,0	97,5	117,0
4,20	57,0	40,7	3	1,85	0,78	254						59	38	31	28	26	35	31	2,00 95,0	142,5	171,0
4,40	81,0	11,4	4 25.2	1,85	0,81	290	2,70	28,1	459,0	688,5	243,0	70	40	33	30	28	37	33	135,0	202,5	243,0
4,60	127,0	26,5	4 (1)	1,85	0,85	343 417	4,23 7,10	46,6	719,7 1207,0	1079,5	381,0	84	41 43	35 37	32 34	30 32	39 41	35 38	211,7	317,5	381,0
4,80 5,00	213,0 154,0	20,9 15.0	4	1,85 1.09	0,89 0,91	369	5,13	84,4 54,6	872,7	1810,5 1309,0	639,0 462,0	100 89	43 42	37 35	32	32 30	39	36	355,0 256,7	532,5 385.0	639,0 462.0
5,20	347,0	13,0	3	1,15	0,93	502	J, 13 	J4,6 				100	43	39	37	34	43	40	578,3		1041,0

Sig. Sandro Gorini Lo sperimentatore:

Il direttore laboratorie เพลาะ เป้า:เรานาเลาเอาเพื่อริย์เรื่อ

Sede Legale: Via Ser Gorello, 11/a - 52100 AREZZO - Cod. fiscale e P. IVA: 01358250510

Uffici e Deposito: Via A. Grandi, 51 - 52100 AREZZO

PROVA PENETROMETRICA STATICA MECCANICA LETTURE CAMPAGNA E VALORI TRASFORMATI

2 CPT 251-2011 riferimento certificato n° 567/2011 n° verb.accett. 351 del 22/12/2011

TESSITURA OCCHIOLINI di Occhiolini F. & C. Committente:

Costruzione edificio industriale Cantiere:

kg/cm² Data certificato: Pagina:

U.M.:

30/12/2011

28/12/2011

Data esec.:

Località:	F	errantina	- Bibbie	na - AR						Ela	borato:	Falda	: -4,20 m	da p.c.	
H m	L1 -	L2	Lt -	qc kg/cm²	fs kg/cm²	F -	Rf %	H m	L1 -	L2	Lt	qc kg/cm²	fs kg/cm²	F -	Rf %
0,20 0,40 0,60	0,0 19,0 27,0	0,0 22,0 39,0		0,0 19,0 27,0	0,20 0,80 1,33 1,33	0 24 20	4,2 4,9								
0,80 1,00	23,0 47,0 49,0	43.0		23.0	1,33	17 - 20 - 27	5,8								
1,20 1,40 1,60	55,0 78,0	84,0 82,0 124,0		47,0 49,0 55,0 78,0	2,33 1,80 3,07 1,60	18 49	3,7 5,6 2,1								
1,80 2,00 2,20	106,0 93.0	130,0 243.0		106,0 93,0 66.0	1,60 10,00 0,60 1,60	11 155 41	5,0 3,7 5,6 2,1 9,4 0,6 2,4								
2,40 2,60 2,80	66,0 149,0 42,0 40,0 82,0	75,0 173,0 112,0 101,0 120,0		149,0 42,0 40,0 82,0	1,60 4,67 4,07 2,53 2,27	32 10 16	3,1 9,7 6,3 2,8								
3,00 3,20 3,40	82,0 42,0 36,0	76,0 69,0		82,0 42,0 36,0	2,27 2,20 1,47	36 19 24	2,8 5,2 4,1 7,9								
3,60 3,80 4,00	74.0	96.0		74,0 56,0 113,0	5,87 4,13 2,00	13 14 57	7,9 7,4								
4,00 4,20 4,40	56,0 113,0 23,0 361,0	144,0 _ 175,0 53,0 530,0		23,0 261,0	11,27	2	7,4 1,8 49,0								

H = profondità

L1 = prima lettura (punta)

L2 = seconda lettura (punta + laterale)

Lt = terza lettura (totale) CT =10,00 costante di trasformazione

qc = resistenza di punta

fs = resistenza laterale calcolata

0.20 m sopra quota qc

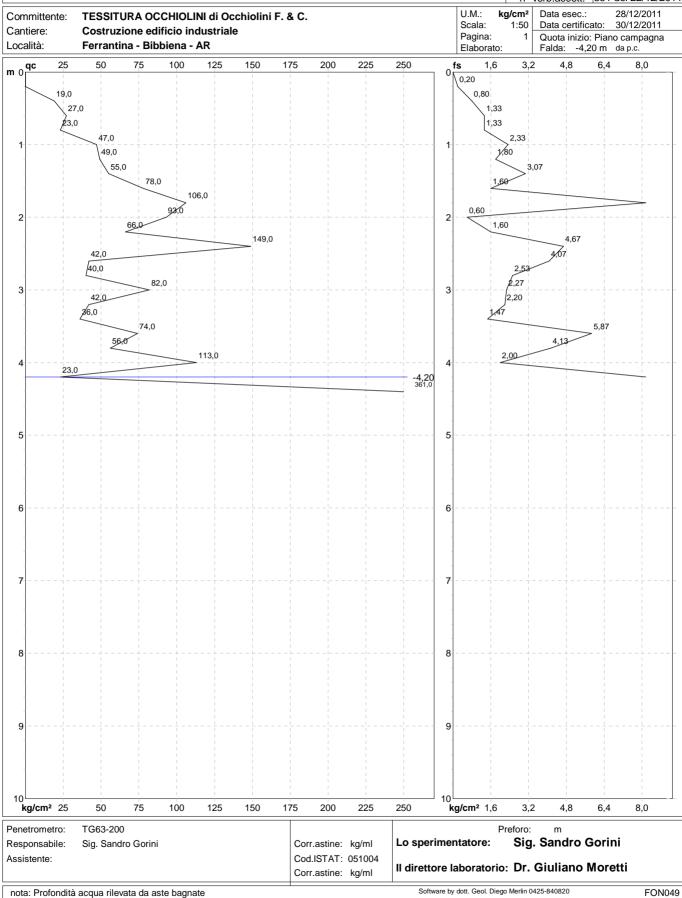
F = rapporto Begemann (qc / fs) Rf = rapporto Schmertmann (fs / qc)*100

Sig. Sandro Gorini Lo sperimentatore:

Il direttore laboratorio: Dr. Giuliano Moretti

nota: Profondità acqua rilevata da aste bagnate

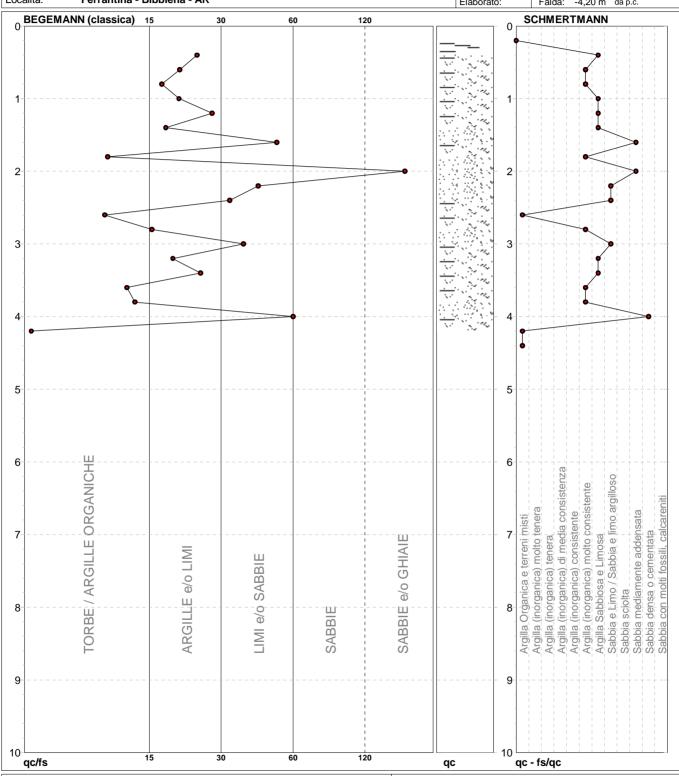
Software by dott. Geol. Diego Merlin 0425-840820


PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI DI RESISTENZA

 CPT
 2

 riferimento
 251-2011

 certificato n°
 567/2011


 n° verb.accett.
 351 del 22/12/2011

PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI LITOLOGIA

riferimento 251-2011
certificato n° 567/2011
n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 Committente: TESSITURA OCCHIOLINI di Occhiolini F. & C. Scala: 1:50 Data certificato: 30/12/2011 Cantiere: Costruzione edificio industriale Pagina: Località: Ferrantina - Bibbiena - AR Elaborato: Falda: -4,20 m da p.c.

Torbe / Argille org. : 6 punti, 12,24%
Argille e/o Limi : 9 punti, 18,37%
Limi e/o Sabbie : 5 punti, 10,20%

Sabbie e/o Ghiaie :

Lo sperimentatore: Sig. Sandro Gorini

Il direttore laboratorio: Dr. Giuliano Moretti

nota: Profondità acqua rilevata da aste bagnate

1 punti, 2,04%

Software by dott. Geol. Diego Merlin 0425-840820

Sede Legale : Via Ser Gorello, 11/a - 52100 AREZZO - Cod. fiscale e P. IVA: 01358250510 Uffici e Deposito : Via A. Grandi, 51 - 52100 AREZZO

PROVA PENETROMETRICA STATICA MECCANICA **PARAMETRI GEOTECNICI**

2 251-2011 riferimento certificato n° 567/2011 n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 Committente: TESSITURA OCCHIOLINI di Occhiolini F. & C. Data certificato: 30/12/2011 Cantiere: Costruzione edificio industriale Pagina: Località: Ferrantina - Bibbiena - AR Elaborato: Falda: -4,20 m da p.c.

							1	UTA	RA C	OESI	VA	NATURA GRANULARE											
Prof.	qc	qc/fs	zone	γ'	σ'νο	Vs	Cu	OCR	Eu50	Eu25	Мо	Dr	øSc	øСа	øKo	øDB	øDM	øMe	F.L. E'50	E'25	Mo		
m	U.M.			t/m³	U.M.	m/s	U.M.	%	U.M.	U.M.	U.M.	%	(°)	(°)	(°)	(°)	(°)	(°)	U.M.	U.M.	U.M.		
0,20			3	1,85	0,04																		
0,40	19,0	23,8	2	1,85	0,07	168	0,78	99,9	131,8	197,8	58,1												
0,60 0,80	27,0 23,0	20,3 17,3	4 (2.2)	1,85 1.85	0,11 0.15	192 180	0,95 0.87	91,6 57,3	161,1 147.5	241,6 221,3	81,0 69,0	81 68	41 39	37 35	34 32	32 30	41 39	28 28	45,0 38,3	67,5 57,5	81,0 69,0		
1,00	47,0	20,2	4	1,85	0,13	236	1,57	90.7	266,3	399,5	141.0	87	42	37	35	32	41	31	36,3 78.3	117.5	141.0		
1,20	49,0	27,2	4 - 17	1.85	0,13	240	1.63	76.1	277.7	416,5	147.0	84	41	37	34	32	41	31	81.7	122.5	147.0		
1,40	55,0	17.9	4 (1)	1.85	0,26	251	1.83	72,5	311,7	467,5	165,0	84	41	36	34	31	40	31	91.7	137.5	165,0		
1,60	78,0	48,8	3	1,85	0,30	286		,-				93	42	37	35	32	41	33	2,00 130,0	195,0	234,0		
1,80	106,0	10,6	4 ~~	1,85	0,33	321	3,53	99,9	600,7	901,0	318,0	100	43	38	36	33	42	34	176,7	265,0	318,0		
2,00	93,0	155,0	3	1,85	0,37	305						94	42	37	35	32	41	33	2,00 155,0	232,5	279,0		
2,20	66,0	41,3	3	1,85	0,41	268						80	41	35	32	30	39	32	2,00 110,0	165,0	198,0		
2,40	149,0	31,9	3	1,85	0,44	365	4 40			057.0	400.0	100	43	39	36	34	42	36	2,00 248,3	372,5	447,0		
2,60 2,80	42,0 40.0	10,3 15,8	4 - 2	1,85 1.85	0,48 0,52	226 222	1,40 1.33	23,9 20,5	238,0 226,7	357,0 340,0	126,0 120,0	60 57	38 38	32 31	29 28	27 27	36 36	30 30	70,0 66.7	105,0 100.0	126,0 120,0		
3,00	82,0	36,1	3	1,85	0,52	291	1,33	20,5	220,7	340,0	120,0	80	41	35	32	30	39	33	2,00 136,7	205.0	246.0		
3,20	42,0	19,1	4 ***	1.85	0,59	226	1.40	18,4	238.0	357.0	126.0	55	38	31	28	26	35	30	70,0	105.0	126.0		
3,40	36,0	24,5	4 1	1,85	0,63	214	1,20	14,1	204,0	306,0	108,0	48	37	30	27	25	34	30	60,0	90,0	108,0		
3,60	74,0	12,6	4 ~	1,85	0,67	280	2,47	32,3	419,3	629,0	222,0	72	40	33	30	28	38	32	123,3	185,0	222,0		
3,80	56,0	13,6	4 ~	1,85	0,70	252	1,87	21,3	317,3	476,0	168,0	61	39	32	29	27	36	31	93,3	140,0	168,0		
4,00	113,0	56,5	3	1,85	0,74	329						84	41	35	32	30	39	34	2,00 188,3	282,5	339,0		
4,20 4,40	23,0 361,0	2,0	4 ^\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	0,94 1,15	0,76 0,78	180 509	0,87	7,4 	186,4 	279,5 	69,0 	28 100	35 43	27 40	24 38	22 35	30 44	28 40	38,3 601,7	57,5 902,5	69,0 1083,0		

Sede Legale: Via Ser Gorello, 11/a - 52100 AREZZO - Cod. fiscale e P. IVA: 01358250510

Uffici e Deposito: Via A. Grandi, 51 - 52100 AREZZO

PROVA PENETROMETRICA STATICA MECCANICA LETTURE CAMPAGNA E VALORI TRASFORMATI

3 251-2011 riferimento certificato n° 568/2011 n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 TESSITURA OCCHIOLINI di Occhiolini F. & C. Committente: Data certificato: 30/12/2011 Cantiere: Costruzione edificio industriale Pagina: Ferrantina - Bibbiena - AR Località: Falda: Non rilevata Elaborato:

H = profondità

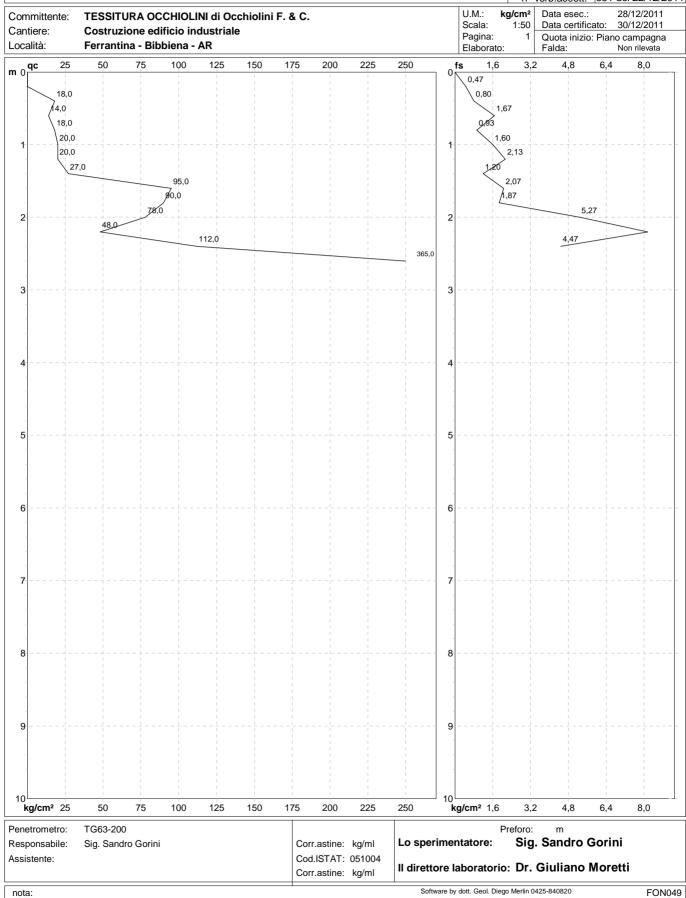
L1 = prima lettura (punta)

L2 = seconda lettura (punta + laterale) Lt = terza lettura (totale) CT =10,00 costante di trasformazione

qc = resistenza di punta

fs = resistenza laterale calcolata

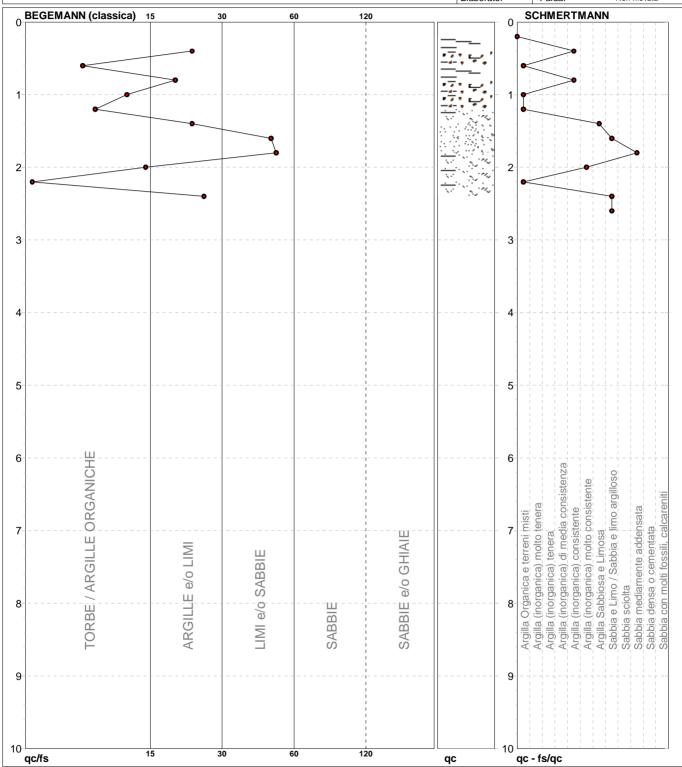
0.20 m sopra quota qc F = rapporto Begemann (qc / fs) Rf = rapporto Schmertmann (fs / qc)*100


Sig. Sandro Gorini Lo sperimentatore:

Il direttore laboratorio: Dr. Giuliano Moretti

Software by dott. Geol. Diego Merlin 0425-840820 FON049 nota:

PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI DI RESISTENZA


riferimento 251-2011
certificato n° 568/2011
n° verb.accett. 351 del 22/12/2011

PROVA PENETROMETRICA STATICA MECCANICA DIAGRAMMI LITOLOGIA

riferimento 251-2011
certificato n° 568/2011
n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 Committente: **TESSITURA OCCHIOLINI di Occhiolini F. & C.** Scala: 1:50 Data certificato: 30/12/2011 Cantiere: Costruzione edificio industriale Pagina: Ferrantina - Bibbiena - AR Località: Elaborato: Falda: Non rilevata

Torbe / Argille org. : Argille e/o Limi : Limi e/o Sabbie : 6 punti, 12,24% 4 punti, 8,16% 2 punti, 4,08%

Lo sperimentatore:

Sig. Sandro Gorini

Il direttore laboratorio: Dr. Giuliano Moretti

nota: Software by dott. Geol. Diego Merlin 0425-840820

Sede Legale : Via Ser Gorello, 11/a - 52100 AREZZO - Cod. fiscale e P. IVA: 01358250510 Uffici e Deposito : Via A. Grandi, 51 - 52100 AREZZO

PROVA PENETROMETRICA STATICA MECCANICA **PARAMETRI GEOTECNICI**

3 251-2011 riferimento certificato n° 568/2011 n° verb.accett. 351 del 22/12/2011

U.M.: kg/cm² Data esec.: 28/12/2011 Committente: TESSITURA OCCHIOLINI di Occhiolini F. & C. Data certificato: 30/12/2011 Cantiere: Costruzione edificio industriale Pagina: Località: Ferrantina - Bibbiena - AR Elaborato: Falda: Non rilevata

							- N	IATII	RA C	NATURA GRANULARE												
								<u>IAIU</u>	NA C													
Prof.	qc	qc/fs	zone	γ'	σ'νο	Vs	Cu	OCR	Eu50	Eu25	Mo	Dr	øSc	øСа	øKo	øDB	øDM	øMe	F.L.	E'50	E'25	Mo
m	U.M.			t/m³	U.M.	m/s	U.M.	%	U.M.	U.M.	U.M.	%	(°)	(°)	(°)	(°)	(°)	(°)		U.M.	U.M.	U.M.
0,20			3	1,85	0,04																	
0,40	18,0	22,5	2	1,85	0,07	164	0,75	99,9	127,5	191,3	56,2											
0,60	14,0	8,4	2 ——	1,85	0,11	150	0,64	55,7	108,2	162,3	48,2											
0,80	18,0	19,4	2	1,85	0,15	164	0,75	47,7	127,5	191,3	56,2											
1,00	20,0	12,5	4 ***	1,85	0,19	171	0,80	39,2	136,0	204,0	60,0	58	38	33	30	28	37	27		33,3	50,0	60,0
1,20	20,0	9,4	4 ~~ >	1,85	0,22	171	0,80	31,2	136,0	204,0	60,0	53	38	32	29	27	36	27		33,3	50,0	60,0
1,40	27,0	22,5	4 ***	1,85	0,26	192	0,95	31,8	161,1	241,6	81,0	60	38	33	30	28	37	28		45,0	67,5	81,0
1,60	95,0	45,9	3	1,85	0,30	308						100	43	38	36	33	42	34		158,3	237,5	285,0
1,80	90,0	48,1	3	1,85	0,33	302						95	43	38	35	33	41	33		150,0	225,0	270,0
2,00	78,0	14,8	4 ***	1,85	0,37	286	2,60	71,8	442,0	663,0	234,0	88	42	36	34	31	40	33		130,0	195,0	234,0
2,20	48,0	4,1	4	1,85	0,41	238	1,60	34,8	272,0	408,0	144,0	69	39	33	31	29	38	31		80,0	120,0	144,0
2,40	112.0	25.1	4 ~	1.85	0.44	328	3.73	89.9	634.7	952.0	336.0	96	43	37	35	32	41	34		186.7	280.0	336.0
2,60	365,0	,	3	1,85	0,48	511						100	43	43	40	37	45	40		608,3		1095,0

Sig. Sandro Gorini Lo sperimentatore:

Il direttore laboratorie เพลาะ เป้า:เรานาเลาเอาเพื่อริย์เรื่อ